ترغب بنشر مسار تعليمي؟ اضغط هنا

Word Rotators Distance

60   0   0.0 ( 0 )
 نشر من قبل Sho Yokoi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A key principle in assessing textual similarity is measuring the degree of semantic overlap between two texts by considering the word alignment. Such alignment-based approaches are intuitive and interpretable; however, they are empirically inferior to the simple cosine similarity between general-purpose sentence vectors. To address this issue, we focus on and demonstrate the fact that the norm of word vectors is a good proxy for word importance, and their angle is a good proxy for word similarity. Alignment-based approaches do not distinguish them, whereas sentence-vector approaches automatically use the norm as the word importance. Accordingly, we propose a method that first decouples word vectors into their norm and direction, and then computes alignment-based similarity using earth movers distance (i.e., optimal transport cost), which we refer to as word rotators distance. Besides, we find how to grow the norm and direction of word vectors (vector converter), which is a new systematic approach derived from sentence-vector estimation methods. On several textual similarity datasets, the combination of these simple proposed methods outperformed not only alignment-based approaches but also strong baselines. The source code is available at https://github.com/eumesy/wrd



قيم البحث

اقرأ أيضاً

There is a great deal of work in cognitive psychology, linguistics, and computer science, about using word (or phrase) frequencies in context in text corpora to develop measures for word similarity or word association, going back to at least the 1960 s. The goal of this chapter is to introduce the normalizedis a general way to tap the amorphous low-grade knowledge available for free on the Internet, typed in by local users aiming at personal gratification of diverse objectives, and yet globally achieving what is effectively the largest semantic electronic database in the world. Moreover, this database is available for all by using any search engine that can return aggregate page-count estimates for a large range of search-queries. In the paper introducing the NWD it was called `normalized Google distance (NGD), but since Google doesnt allow computer searches anymore, we opt for the more neutral and descriptive NWD. web distance (NWD) method to determine similarity between words and phrases. It
Recent advances in automatic evaluation metrics for text have shown that deep contextualized word representations, such as those generated by BERT encoders, are helpful for designing metrics that correlate well with human judgements. At the same time , it has been argued that contextualized word representations exhibit sub-optimal statistical properties for encoding the true similarity between words or sentences. In this paper, we present two techniques for improving encoding representations for similarity metrics: a batch-mean centering strategy that improves statistical properties; and a computationally efficient tempered Word Mover Distance, for better fusion of the information in the contextualized word representations. We conduct numerical experiments that demonstrate the robustness of our techniques, reporting results over various BERT-backbone learned metrics and achieving state of the art correlation with human ratings on several benchmarks.
The word movers distance (WMD) is a fundamental technique for measuring the similarity of two documents. As the crux of WMD, it can take advantage of the underlying geometry of the word space by employing an optimal transport formulation. The origina l study on WMD reported that WMD outperforms classical baselines such as bag-of-words (BOW) and TF-IDF by significant margins in various datasets. In this paper, we point out that the evaluation in the original study could be misleading. We re-evaluate the performances of WMD and the classical baselines and find that the classical baselines are competitive with WMD if we employ an appropriate preprocessing, i.e., L1 normalization. However, this result is not intuitive. WMD should be superior to BOW because WMD can take the underlying geometry into account, whereas BOW cannot. Our analysis shows that this is due to the high-dimensional nature of the underlying metric. We find that WMD in high-dimensional spaces behaves more similarly to BOW than in low-dimensional spaces due to the curse of dimensionality.
This work lists and describes the main recent strategies for building fixed-length, dense and distributed representations for words, based on the distributional hypothesis. These representations are now commonly called word embeddings and, in additio n to encoding surprisingly good syntactic and semantic information, have been proven useful as extra features in many downstream NLP tasks.
This paper presents a new Bayesian non-parametric model by extending the usage of Hierarchical Dirichlet Allocation to extract tree structured word clusters from text data. The inference algorithm of the model collects words in a cluster if they shar e similar distribution over documents. In our experiments, we observed meaningful hierarchical structures on NIPS corpus and radiology reports collected from public repositories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا