ﻻ يوجد ملخص باللغة العربية
How to characterize topological quantum phases is a fundamental issue in the broad field of topological matter. From a dimension reduction approach, we propose the concept of high-order band inversion surfaces (BISs) which enable the optimal schemes to characterize equilibrium topological phases by far-from-equilibrium quantum dynamics, and further report the experimental simulation. We show that characterization of a d-dimensional (dD) topological phase can be reduced to lower-dimensional topological invariants in the high-order BISs, of which the nth-order BIS is a (d-n)D interface in momentum space. In quenching the system from trivial phase to topological regime, we unveil a high-order dynamical bulk-surface correspondence that the quantum dynamics exhibits nontrivial topological pattern in arbitrary nth-order BISs, which universally corresponds to and so characterizes the equilibrium topological phase of the post-quench Hamiltonian. This high-order dynamical bulk-surface correspondence provides new and optimal dynamical schemes with fundamental advantages to simulate and detect topological states, in which through the highest-order BISs that are of zero dimension, the detection of topological phase relies on only minimal measurements. We experimentally build up a quantum simulator with spin qubits to investigate a 3D chiral topological insulator through emulating each momentum one by one and measure the high-order dynamical bulk-surface correspondence, with the advantages of topological characterization via highest-order BISs being demonstrated.
We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floque
Topological photonics provides a new paradigm in studying cavity quantum electrodynamics with robustness to disorder. In this work, we demonstrate the coupling between single quantum dots and the second-order topological corner state. Based on the se
We have found out that the band inversion in a silicene quantum dot (QD), in perpendicular magnetic $B$ and electric $Delta_z$ fields, drastically depends on the strength of the magnetic field. We study the energy spectrum of the silicene QD where th
Nanophononics is essential for the engineering of thermal transport in nanostructured electronic devices, it greatly facilitates the manipulation of mechanical resonators in the quantum regime, and could unveil a new route in quantum communications u
Quantum walks, whose dynamics is prescribed by alternating unitary coin and shift operators, possess topological phases akin to those of Floquet topological insulators, driven by a time-periodic field. While there is ample theoretical work on topolog