ﻻ يوجد ملخص باللغة العربية
A perspective is taken on the intangible complexity of economic and social systems by investigating the underlying dynamical processes that produce, store and transmit information in financial time series in terms of the textit{moving average cluster entropy}. An extensive analysis has evidenced market and horizon dependence of the textit{moving average cluster entropy} in real world financial assets. The origin of the behavior is scrutinized by applying the textit{moving average cluster entropy} approach to long-range correlated stochastic processes as the Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Fractional Brownian motion (FBM). To that end, an extensive set of series is generated with a broad range of values of the Hurst exponent $H$ and of the autoregressive, differencing and moving average parameters $p,d,q$. A systematic relation between textit{moving average cluster entropy}, textit{Market Dynamic Index} and long-range correlation parameters $H$, $d$ is observed. This study shows that the characteristic behaviour exhibited by the horizon dependence of the cluster entropy is related to long-range positive correlation in financial markets. Specifically, long range positively correlated ARFIMA processes with differencing parameter $ dsimeq 0.05$, $dsimeq 0.15$ and $ dsimeq 0.25$ are consistent with textit{moving average cluster entropy} results obtained in time series of DJIA, S&P500 and NASDAQ.
The investor is interested in the expected return and he is also concerned about the risk and the uncertainty assumed by the investment. One of the most popular concepts used to measure the risk and the uncertainty is the variance and/or the standard
The principal aim of this work is the evidence on empirical way that catastrophic bifurcation breakdowns or transitions, proceeded by flickering phenomenon, are present on notoriously significant and unpredictable financial markets. Overall, in this
We investigate the large-volatility dynamics in financial markets, based on the minute-to-minute and daily data of the Chinese Indices and German DAX. The dynamic relaxation both before and after large volatilities is characterized by a power law, an
Multifractality is ubiquitously observed in complex natural and socioeconomic systems. Multifractal analysis provides powerful tools to understand the complex nonlinear nature of time series in diverse fields. Inspired by its striking analogy with hy
In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent $tau(q)$ is related to the par