ﻻ يوجد ملخص باللغة العربية
Characterized by bulk Dirac or Weyl cones and surface Fermi-arc states, topological semimetals have sparked enormous research interest in recent years. The nanostructures, with large surface-to-volume ratio and easy field-effect gating, provide ideal platforms to detect and manipulate the topological quantum states. Exotic physical properties originating from these topological states endow topological semimetals attractive for future topological electronics (topotronics). For example, the linear energy dispersion relation is promising for broadband infrared photodetectors, the spin-momentum locking nature of topological surface states is valuable for spintronics, and the topological superconductivity is highly desirable for fault-tolerant qubits. For real-life applications, topological semimetals in the form of nanostructures are necessary in terms of convenient fabrication and integration. Here, we review the recent progresses in topological semimetal nanostructures and start with the quantum transport properties. Then topological semimetal-based electronic devices are introduced. Finally, we discuss several important aspects that should receive great effort in the future, including controllable synthesis, manipulation of quantum states, topological field effect transistors, spintronic applications, and topological quantum computation.
Topological band insulators and (semi-) metals can arise out of atomic insulators when the hopping strength between electrons increases. Such topological phases are separated from the atomic insulator by a bulk gap closing. In this work, we show that
Graphene is a unique material to study fundamental limits of plasmonics. Apart from the ultimate single-layer thickness, its carrier concentration can be tuned by chemical doping or applying an electric field. In this manner the electrodynamic proper
Topological materials with broken inversion symmetry can give rise to nonreciprocal responses, such as the current rectification controlled by magnetic fields via magnetochiral anisotropy. Bulk nonreciprocal responses usually stem from relativistic c
Graphene, a two dimensional (2D) carbon sheet, acquires many of its amazing properties from the Dirac point nature of its electronic structures with negligible spin-orbit coupling. Extending to 3D space, graphene networks with negative curvature, cal
We report the creation and real-space observation of magnetic structures with well-defined topological properties and a lateral size as low as about 150 nm. They are generated in a thin ferrimagnetic film by ultrashort single optical laser pulses. Th