ﻻ يوجد ملخص باللغة العربية
In this note, we unify and extend various concepts in the area of $G$-complete reducibility, where $G$ is a reductive algebraic group. By results of Serre and Bate--Martin--R{o}hrle, the usual notion of $G$-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of $G$. We show that other variations of this notion, such as relative complete reducibility and $sigma$-complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.
Let $K$ be a reductive subgroup of a reductive group $G$ over an algebraically closed field $k$. The notion of relative complete reducibility, introduced in previous work of Bate-Martin-Roehrle-Tange, gives a purely algebraic description of the close
Completely reducible subcomplexes of spherical buildings was defined by J.P. Serre and are used in studying subgroups of reductive algebraic groups. We begin the study of completely reducible subcomplexes of twin buildings and how they may be used to
We study a relative variant of Serres notion of $G$-complete reducibility for a reductive algebraic group $G$. We let $K$ be a reductive subgroup of $G$, and consider subgroups of $G$ which normalise the identity component $K^{circ}$. We show that su
Grothendieck and Harder proved that every principal bundle over the projective line with split reductive structure group (and trivial over the generic point) can be reduced to a maximal torus. Furthermore, this reduction is unique modulo automorphism
Several variants of the classic Fibonacci inflation tiling are considered in an illustrative fashion, in one and in two dimensions, with an eye on changes or robustness of diffraction and dynamical spectra. In one dimension, we consider extension mec