ﻻ يوجد ملخص باللغة العربية
We study ram pressure stripping in simulated Milky Way-like halos at z>=2 from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project. These simulations reach exquisite resolution in their circumgalactic medium (CGM) gas owing to FOGGIEs novel refinement scheme. The CGM of each halo spans a wide dynamic range in density and velocity over its volume---roughly 6 dex and 1000 km/s, respectively---translating into a 5 dex range in ram pressure imparted to interacting satellites. The ram pressure profiles of the simulated CGM are highly stochastic, owing to kpc-scale variations of the density and velocity fields of the CGM gas. As a result, the efficacy of ram pressure stripping depends strongly on the specific path a satellite takes through the CGM. The ram-pressure history of a single satellite is generally unpredictable and not well correlated with its approach vector with respect to the host galaxy. The cumulative impact of ram pressure on the simulated satellites is dominated by only a few short strong impulses---on average, 90% of the total surface momentum gained through ram pressure is imparted in 20% or less of the total orbital time. These results reveal an erratic mode of ram pressure stripping in Milky-Way like halos at high redshift---one that is not captured by a smooth spherically-averaged model of the circumgalactic medium.
Observing the circumgalactic medium (CGM) in emission provides 3D maps of the spatial and kinematic extent of the gas that fuels galaxies and receives their feedback. We present mock emission-line maps of highly resolved CGM gas from the FOGGIE proje
We present simulations from the new Figuring Out Gas & Galaxies in Enzo (FOGGIE) project. In contrast to most extant simulations of galaxy formation, which concentrate computational resources on galactic disks and spheroids with fluid and particle el
The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of non-thermal gas motions. Using simulations of low-redshift, $sim L^*$ galaxies from the
The circumgalactic medium (CGM) of the Milky Way is mostly obscured by nearby gas in position-velocity space because we reside inside the Galaxy. Substantial biases exist in most studies on the Milky Ways CGM that focus on easier-to-detect high-veloc
We report the detection of H$alpha$ trails behind three new intermediate-mass irregular galaxies in the NW outskirts of the nearby cluster of galaxies Abell 1656 (Coma). Hints that these galaxies possess an extended component were found in earlier, d