ﻻ يوجد ملخص باللغة العربية
We study the well-posedness for initial boundary value problems associated with time fractional diffusion equations with non-homogenous boundary and initial values. We consider both weak and strong solutions for the problems. For weak solutions, we introduce a new definition of solutions which allows to prove the existence of solution to the initial boundary value problems with non-zero initial and boundary values and non-homogeneous terms lying in some arbitrary negative-order Sobolev spaces. For strong solutions, we introduce an optimal compatibility condition and prove the existence of the solutions. We introduce also some sharp conditions guaranteeing the existence of solutions with more regularity in time and space.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is e
We examine initial-boundary value problems for diffusion equations with distributed order time-fractional derivatives. We prove existence and uniqueness results for the weak solution to these systems, together with its continuous dependency on initia
We analyze the well-posedness of an anisotropic, nonlocal diffusion equation. Establishing an equivalence between weighted and unweighted anisotropic nonlocal diffusion operators in the vein of unified nonlocal vector calculus, we apply our analysis
The diffusion equation is a universal and standard textbook model for partial differential equations (PDEs). In this work, we revisit its solutions, seeking, in particular, self-similar profiles. This problem connects to the classical theory of speci
We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the