ترغب بنشر مسار تعليمي؟ اضغط هنا

Traversable Thin-shell Wormhole in the Novel 4D Einstein-Gauss-Bonnet Theory

70   0   0.0 ( 0 )
 نشر من قبل Cheng-Yong Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct the thin-shell wormhole solutions of novel four-dimensional Einstein-Gauss-Bonnet model and study their stability under radial linear perturbations. For positive Gauss-Bonnet coupling constant, the stable thin-shell wormhole can only be supported by exotic matter. For negative enough Gauss-Bonnet coupling constant, in asymptotic flat and AdS spacetime, there exists stable neutral thin-shell wormhole with normal matter which has finite throat radius. In asymptotic dS spacetime, there is no stable neutral thin-shell wormhole with normal matter. The charged thin-shell wormholes with normal matter exist in both flat, AdS and dS spacetime. Their throat radius can be arbitrarily small. However, when the charge is too large, the stable thin-shell wormhole can be supported only by exotic matter.

قيم البحث

اقرأ أيضاً

The current trend concerning dense matter physics at sufficiently high densities and low temperatures is expected to behave as a degenerate Fermi gas of quarks forming Cooper pairs, namely a color superconductor, in the core of compact objects. In th is context, we study the anisotropy of quark stars (QSs) assuming the internal composition to be comprised of homogeneous, charge neutral 3-flavor interacting quark matter with $mathcal{O}(m_s^4)$ corrections. Using the equation of state (EoS) with the Tolmann-Oppenheimer-Volkoff (TOV) structure equations, we perform numerical calculation for quark stars and determine the maximum mass-radius relation in the context of $4D$ Einstein-Gauss-Bonnet (EGB) gravity. In particular, we consider the effects of Gauss-Bonnet (GB) coupling constant on the diagrams related to mass-radius $(M-R)$ relation and the mass-central mass density $(M-rho_c)$ relation of QSs. We pay particular attention to the influence of the anisotropy in the equilibrium and stability of strange stars. We also study the other properties of QSs related to compactness and binding energy. Interestingly, our result provides circumstantial evidence in favor of super-massive pulsars in $4D$ EGB gravity.
We investigated the superradiance and stability of the novel 4D charged Einstein-Gauss-Bonnet black hole which is recently inspired by Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)]. We found that the positive Gauss-Bonnet coupling consant $alp ha$ enhances the superradiance, while the negative $alpha$ suppresses it. The condition for superradiant instability is proved. We also worked out the quasinormal modes (QNMs) of the charged Einstein-Gauss-Bonnet black hole and found that the real part of all the QNMs live beyond the superradiance condition and the imaginary parts are all negative. Therefore this black hole is superradiant stable. When $alpha$ makes the black hole extremal, there are normal modes.
In this paper we study the observational constraints that can be imposed on the coupling parameter, $hat alpha$, of the regularized version of the 4-dimensional Einstein-Gauss-Bonnet theory of gravity. We use the scalar-tensor field equations of this theory to perform a thorough investigation of its slow-motion and weak-field limit, and apply our results to observations of a wide array of physical systems that admit such a description. We find that the LAGEOS satellites are the most constraining, requiring $| hat alpha | lesssim 10^{10} ,{rm m}^2$. This constraint suggests that the possibility of large deviations from general relativity is small in all systems except the very early universe ($t<10^{-3}, {rm s}$), or the immediate vicinity of stellar-mass black holes ($Mlesssim100, M_{odot}$). We then consider constraints that can be imposed on this theory from cosmology, black hole systems, and table-top experiments. It is found that early universe inflation prohibits all but the smallest negative values of $hat alpha$, while observations of binary black hole systems are likely to offer the tightest constraints on positive values, leading to overall bounds $0 lesssim hat alpha lesssim 10^8 , {rm m}^2$.
Recently it has been proposed that the Gauss-Bonnet coupling parameter of Lovelock gravity may suitably be rescaled in order to admit physically viable models of celestial phenomena such that higher curvature effects are active in standard four dimen sions as opposed to the usual higher dimensions. We investigate the consequences of this modification in the context of stellar modelling. The evolution of perfect fluid distributions is governed by the pressure isotropy condition and through stipulation of one of the metric potentials complete models emerge from solutions of the master differential equation. New classes of exact solution with this approach have been reported. One particular model is analysed in detail and shown to comport with elementary physical requirements demanded of realistic compact stars suggesting that the modified theory is not inconsistent with observations.
We have investigated tidal forces and geodesic deviation motion in the 4D-Einstein-Gauss-Bonnet spacetime. Our results show that tidal force and geodesic deviation motion depend sharply on the sign of Gauss-Bonnet coupling constant. Comparing with Sc hwarzschild spacetime, the strength of tidal force becomes stronger for the negative Gauss-Bonnet coupling constant, but is weaker for the positive one. Moreover, tidal force behaves like those in the Schwarzschild spacetime as the coupling constant is negative, and like those in Reissner-Nordstr{o}m black hole as the constant is positive. We also present the change of geodesic deviation vector with Gauss-Bonnet coupling constant under two kinds of initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا