ترغب بنشر مسار تعليمي؟ اضغط هنا

Science with the TianQin observatory: Preliminary results on stellar-mass binary black holes

87   0   0.0 ( 0 )
 نشر من قبل Shuai Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the prospect of using TianQin to detect stellar-mass binary black holes (SBBHs). We estimate the expected detection number as well as the precision of parameter estimation on SBBH inspirals, using five different population models. We note TianQin can possibly detect a few SBBH inspirals with signal to noise ratios greater than 12; lowering the threshold and combining multiple detectors can both boost the detection number. The source parameters can be recovered with good precision for most events above the detection threshold. For example, the precision of the merger time most likely occurs near 1s, making it possible to guide the detection of the ground-based detectors, the precision of the eccentricity $e_0$ most likely occurs near $10^{-4}$, making it possible to distinguish the formation channels, and the precision of the mass parameter is better than $10^{-6}$ in general and most likely occurs near $10^{-7}$. We note, in particular, that for a typical merger event, the error volume is likely to be small enough to contain only the host galaxy, which could greatly help in the study of gravitational wave cosmology and relevant studies through the multimessenger observation.



قيم البحث

اقرأ أيضاً

We explore the prospects of detecting of Galactic double white dwarf (DWD) binaries with the space-based gravitational wave (GW) observatory TianQin. In this work, we analyze both a sample of currently known DWDs and a realistic synthetic population of DWDs to assess the number of guaranteed detections and the full capacity of the mission. We find that TianQin can detect 12 out of $sim100$ known DWDs; GW signals of these binaries can be modeled in detail ahead of the mission launch, and therefore they can be used as verification sources. Besides we estimate that TianQin has potential to detect as many as $10^4$ DWDs in the Milky Way. TianQin is expected to measure their orbital periods and amplitudes with accuracies of $sim10^{-7}$ and $sim0.2$, respectively, and to localize on the sky a large fraction (39%) of the detected population to better than 1 deg$^2$. We conclude that TianQin has the potential to significantly advance our knowledge on Galactic DWDs by increasing the sample up to 2 orders of magnitude, and will allow their multi-messenger studies in combination with electromagnetic telescopes. We also test the possibilities of different configurations of TianQin: (1) the same mission with a different orientation, (2) two perpendicular constellations combined into a network, and (3) the combination of the network with the ESA-led Laser Interferometer Space Antenna. We find that the network of detectors boosts the accuracy on the measurement of source parameters by 1-2 orders of magnitude, with the improvement on sky localization being the most significant.
In this work, we study the prospect of detecting the stochastic gravitational-wave background with the TianQin observatory. We consider both astrophysical-origin and cosmological-origin sources, including stellar-mass binary black holes, binary neutr on stars, Galactic white dwarves, inflation, first order phase transition, and cosmic defects. For the detector configurations, we considered TianQin, TianQin I+II and TianQin + LISA. We studied the detectability of stochastic gravitational-wave backgrounds with the assumed methods of both cross-correlation and null channel, and present the corresponding power-law integrated sensitivity curves. We introduce the definition of the joint foreground with a network of detectors. With the joint foreground, the number of resolved double white dwarves in the Galaxy will be increased by 5% $sim$ 22% compared with simple combination of individual detectors. The astrophysical background from the binary black holes and the binary neutron stars under the theoretical models are predicted to be detectable with signal-to-noise ratio of around 10 after five years operation. As for the cosmological sources, their models are highly uncertain, and we only roughly estimate the detection capability under certain cases.
Constituted with a massive black hole and a stellar mass compact object, Extreme Mass Ratio Inspiral (EMRI) events hold unique opportunity for the study of massive black holes, such as by measuring and checking the relations among the mass, spin and quadrupole moment of a massive black hole, putting the no-hair theorem to test. TianQin is a planned space-based gravitational wave observatory and EMRI is one of its main types of sources. It is important to estimate the capacity of TianQin on testing the no-hair theorem with EMRIs. In this work, we use the analytic kludge waveform with quadrupole moment corrections and study how the quadrupole moment can be constrained with TianQin. We find that TianQin can measure the dimensionless quadrupole moment parameter with accuracy to the level of $10^{-5}$ under suitable scenarios. The choice of the waveform cutoff is found to have significant effect on the result: if the Schwarzschild cutoff is used, the accuracy depends strongly on the mass of the massive black hole, while the spin has negligible impact; if the Kerr cutoff is used, however, the dependence on the spin is more significant. We have also analyzed the cases when TianQin is observing simultaneously with other detectors such as LISA.
We use the Fisher information matrix method to calculate the parameter estimation accuracy of inspiraling supermassive black holes binaries for TianQin, a space-borne laser interferometric detector aimed at detecting gravitational waves in the millih ertz frequency band. The `restricted post-Newtonian waveform in which third order post-Newtonian (3PN) phase including spin effects (spin-orbit $beta$ and spin-spin $sigma$) and first-order eccentricity contribution is employed. Monte Carlo simulations using $10^3$ binaries for mass pairs with component masses in the range of $({10^5},{10^7}){M_ odot }$ and cosmological redshift $z=0.5$ show that the medians of the root-mean-square error distributions for the chirp mass $M_c$ and symmetric mass ratio $eta$ are in the range of $sim 0.02% - 0.7% $ and $sim 4% - 8% $, respectively. The luminosity distance $D_L$ can be determined to be $sim 1% - 3% $, and the angular resolution of source $Delta Omega $ is better than 12 deg$^2$. The corresponding results for $z=1.0$ and $2.0$, which are deteriorated with the decreasing of the signal-to-noise ratio, have also been given. We show that adding spin parameters degrades measurement accuracy of the mass parameters (${M_c}$, $eta$), and the time and the orbital phase of coalescence ($t_c$, $phi _c$); the inclusion of the first-order eccentricity correction to the phase worsens the estimation accuracy comparing with the circular cases. We also show the effects of post-Newtonian order on parameter estimation accuracy by comparing the results based on second order and third order post-Newtonian phases. Moreover, we calculate the horizon distance of supermassive black hole binaries for TianQin.
163 - Ilya Mandel , Alison Farmer 2018
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object merge rs could be used as a probe of stellar and binary evolution, and perhaps of stellar dynamics. This colloquium-style article summarizes the existing observations, describes theoretical predictions for formation channels of merging stellar-mass black-hole binaries along with their rates and observable properties, and presents some of the prospects for gravitational-wave astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا