ﻻ يوجد ملخص باللغة العربية
The present paper is aimed at the study of traversable wormholes in $f(R)$ gravity with a viable $f(R)$ function defined as $f(R)=R-mu R_cBig(frac{R}{R_c}Big)^p$, where $R$ is scalar curvature, $mu$, $R_c$ and $p$ are constants with $mu, R_c>0$ and $0<p<1$ citep{Amendola}. The metric of wormhole is dependent on shape function $b(r)$ and redshift function $phi(r)$ which characterize its properties, so the shape function and redshift function play an important role in wormhole modeling. In this work, the wormhole solutions are determined for (i) $phi(r)=frac{1}{r}$ and (ii) $phi(r)=c$ (constant) with $b(r)=frac{r}{exp(r-r_0)}$ citep{godani1}. Further, the regions respecting the energy conditions are investigated.
We present a traversable wormhole solution using the traceless $f(R,T)$ theory of gravity. In the $f(R,T)$ gravity, the Ricci scalar $R$ in the Einstein-Hilbert action is replaced by a function of $R$ and trace of the energy momentum tensor $T$. The
In this work we propose the modelling of static wormholes within the $f(R,T)$ extended theory of gravity perspective. We present some models of wormholes, which are constructed from different hypothesis for their matter content, i.e., different relat
In the present work, a new form of the logarithmic shape function is proposed for the linear $f(R,T)$ gravity, $f(R,T)=R+2lambda T$ where $lambda$ is an arbitrary coupling constant, in wormhole geometry. The desired logarithmic shape function accompl
Traversable wormholes, studied by Morris and Thorne cite{Morris1} in general relativity, are investigated in this research paper in $f(R,T)$ gravity by introducing a new form of non-linear $f(R,T)$ function. By using this novel function, the Einstein
Wormholes are a solution for General Relativity field equations which characterize a passage or a tunnel that connects two different regions of space-time and is filled by some sort of exotic matter, that does not satisfy the energy conditions. On th