ترغب بنشر مسار تعليمي؟ اضغط هنا

White Paper on Critical and Massive Machine Type Communication Towards 6G

160   0   0.0 ( 0 )
 نشر من قبل Nurul Huda Mahmood
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The society as a whole, and many vertical sectors in particular, is becoming increasingly digitalized. Machine Type Communication (MTC), encompassing its massive and critical aspects, and ubiquitous wireless connectivity are among the main enablers of such digitization at large. The recently introduced 5G New Radio is natively designed to support both aspects of MTC to promote the digital transformation of the society. However, it is evident that some of the more demanding requirements cannot be fully supported by 5G networks. Alongside, further development of the society towards 2030 will give rise to new and more stringent requirements on wireless connectivity in general, and MTC in particular. Driven by the societal trends towards 2030, the next generation (6G) will be an agile and efficient convergent network serving a set of diverse service classes and a wide range of key performance indicators (KPI). This white paper explores the main drivers and requirements of an MTC-optimized 6G network, and discusses the following six key research questions: - Will the main KPIs of 5G continue to be the dominant KPIs in 6G; or will there emerge new key metrics? - How to deliver different E2E service mandates with different KPI requirements considering joint-optimization at the physical up to the application layer? - What are the key enablers towards designing ultra-low power receivers and highly efficient sleep modes? - How to tackle a disruptive rather than incremental joint design of a massively scalable waveform and medium access policy for global MTC connectivity? - How to support new service classes characterizing mission-critical and dependable MTC in 6G? - What are the potential enablers of long term, lightweight and flexible privacy and security schemes considering MTC device requirements?



قيم البحث

اقرأ أيضاً

This white paper explores future localization and sensing opportunities for beyond 5G wireless communication systems by identifying key technology enablers and discussing their underlying challenges, implementation issues, and identifying potential s olutions. In addition, we present exciting new opportunities for localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Following the trend initiated in the 5G NR systems, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler and angular resolutions, as well as localization to cm-level degree of accuracy. Moreover, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. 6G will be truly intelligent wireless systems that will not only provide ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency and space. This white paper concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust. Addressing these challenges will undoubtedly require an inter-disciplinary and concerted effort from the research community.
In this white paper we provide a vision for 6G Edge Intelligence. Moving towards 5G and beyond the future 6G networks, intelligent solutions utilizing data-driven machine learning and artificial intelligence become crucial for several real-world appl ications including but not limited to, more efficient manufacturing, novel personal smart device environments and experiences, urban computing and autonomous traffic settings. We present edge computing along with other 6G enablers as a key component to establish the future 2030 intelligent Internet technologies as shown in this series of 6G White Papers. In this white paper, we focus in the domains of edge computing infrastructure and platforms, data and edge network management, software development for edge, and real-time and distributed training of ML/AI algorithms, along with security, privacy, pricing, and end-user aspects. We discuss the key enablers and challenges and identify the key research questions for the development of the Intelligent Edge services. As a main outcome of this white paper, we envision a transition from Internet of Things to Intelligent Internet of Intelligent Things and provide a roadmap for development of 6G Intelligent Edge.
Driven by the emerging use cases in massive access future networks, there is a need for technological advancements and evolutions for wireless communications beyond the fifth-generation (5G) networks. In particular, we envisage the upcoming sixth-gen eration (6G) networks to consist of numerous devices demanding extremely high-performance interconnections even under strenuous scenarios such as diverse mobility, extreme density, and dynamic environment. To cater for such a demand, investigation on flexible and sustainable radio access network (RAN) techniques capable of supporting highly diverse requirements and massive connectivity is of utmost importance. To this end, this paper first outlines the key driving applications for 6G, including smart city and factory, which trigger the transformation of existing RAN techniques. We then examine and provide in-depth discussions on several critical performance requirements (i.e., the level of flexibility, the support for massive interconnectivity, and energy efficiency), issues, enabling technologies, and challenges in designing 6G massive RANs. We conclude the article by providing several artificial-intelligence-based approaches to overcome future challenges.
The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.
371 - Roman Kovalchukov 2021
Massive machine type communications (mMTC) is one of the cornerstone services that have to be supported by 5G systems. 3GPP has already introduced LTE-M and NB-IoT, often referred to as cellular IoT, in 3GPP Releases 13, 14, and 15 and submitted thes e technologies as part of 3GPP IMT-2020 (i.e., 5G) technology submission to ITU-R. Even though NB-IoT and LTE-M have shown to satisfy 5G mMTC requirements defined by ITU-R, it is expected that these cellular IoT solutions will not address all aspects of IoT and ongoing digitalization, including the support for direct communication between things with flexible deployments, different business models, as well as support for even higher node densities and enhanced coverage. In this paper, we introduce the DECT-2020 standard recently published by ETSI for mMTC communications. We evaluate its performance and compare it to the existing LPWAN solutions showing that it outperforms those in terms of supported density of nodes while still keeping delay and loss guarantees at the required level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا