ترغب بنشر مسار تعليمي؟ اضغط هنا

Conditional Neural Generation using Sub-Aspect Functions for Extractive News Summarization

68   0   0.0 ( 0 )
 نشر من قبل Zhengyuan Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Much progress has been made in text summarization, fueled by neural architectures using large-scale training corpora. However, in the news domain, neural models easily overfit by leveraging position-related features due to the prevalence of the inverted pyramid writing style. In addition, there is an unmet need to generate a variety of summaries for different users. In this paper, we propose a neural framework that can flexibly control summary generation by introducing a set of sub-aspect functions (i.e. importance, diversity, position). These sub-aspect functions are regulated by a set of control codes to decide which sub-aspect to focus on during summary generation. We demonstrate that extracted summaries with minimal position bias is comparable with those generated by standard models that take advantage of position preference. We also show that news summaries generated with a focus on diversity can be more preferred by human raters. These results suggest that a more flexible neural summarization framework providing more control options could be desirable in tailoring to different user preferences, which is useful since it is often impractical to articulate such preferences for different applications a priori.



قيم البحث

اقرأ أيضاً

128 - Baoyu Jing , Zeyu You , Tao Yang 2021
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged gr aph neural networks to capture the inter-sentential relationship (e.g., the discourse graph) to learn contextual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity & natural connection), nor model intra-sentential relationships (e.g, semantic & syntactic relationship among words). To address these problems, we propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate the effectiveness of our method.
The recent years have seen remarkable success in the use of deep neural networks on text summarization. However, there is no clear understanding of textit{why} they perform so well, or textit{how} they might be improved. In this paper, we seek to better understand how neural extractive summarization systems could benefit from different types of model architectures, transferable knowledge and learning schemas. Additionally, we find an effective way to improve current frameworks and achieve the state-of-the-art result on CNN/DailyMail by a large margin based on our observations and analyses. Hopefully, our work could provide more clues for future research on extractive summarization.
In this paper, we take stock of the current state of summarization datasets and explore how different factors of datasets influence the generalization behaviour of neural extractive summarization models. Specifically, we first propose several propert ies of datasets, which matter for the generalization of summarization models. Then we build the connection between priors residing in datasets and model designs, analyzing how different properties of datasets influence the choices of model structure design and training methods. Finally, by taking a typical dataset as an example, we rethink the process of the model design based on the experience of the above analysis. We demonstrate that when we have a deep understanding of the characteristics of datasets, a simple approach can bring significant improvements to the existing state-of-the-art model.A
In aspect-based sentiment analysis, extracting aspect terms along with the opinions being expressed from user-generated content is one of the most important subtasks. Previous studies have shown that exploiting connections between aspect and opinion terms is promising for this task. In this paper, we propose a novel joint model that integrates recursive neural networks and conditional random fields into a unified framework for explicit aspect and opinion terms co-extraction. The proposed model learns high-level discriminative features and double propagate information between aspect and opinion terms, simultaneously. Moreover, it is flexible to incorporate hand-crafted features into the proposed model to further boost its information extraction performance. Experimental results on the SemEval Challenge 2014 dataset show the superiority of our proposed model over several baseline methods as well as the winning systems of the challenge.
Current abstractive summarization systems outperform their extractive counterparts, but their widespread adoption is inhibited by the inherent lack of interpretability. To achieve the best of both worlds, we propose EASE, an extractive-abstractive fr amework for evidence-based text generation and apply it to document summarization. We present an explainable summarization system based on the Information Bottleneck principle that is jointly trained for extraction and abstraction in an end-to-end fashion. Inspired by previous research that humans use a two-stage framework to summarize long documents (Jing and McKeown, 2000), our framework first extracts a pre-defined amount of evidence spans as explanations and then generates a summary using only the evidence. Using automatic and human evaluations, we show that explanations from our framework are more relevant than simple baselines, without substantially sacrificing the quality of the generated summary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا