ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparative Resonant Inelastic X-ray Scattering Study of Ca$_2$RuO$_4$ and Ca$_3$Ru$_2$O$_7$

142   0   0.0 ( 0 )
 نشر من قبل Karin Von Arx
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined oxygen $K$-egde x-ray absorption spectroscopy (XAS) and resonant inelastic x-ray scattering (RIXS) study of the bilayer ruthenate Ca$_3$Ru$_2$O$_7$. Our RIXS experiments on Ca$_3$Ru$_2$O$_7$ were carried out on the overlapping in-plane and inner apical oxygen resonances, which are distinguishable from the outer apical one. Comparison to equivalent oxygen $K$-edge spectra recorded on band-Mott insulating Ca$_2$RuO$_4$ is made. In contrast to Ca$_2$RuO$_4$ spectra, which contain excitations linked to Mott physics, Ca$_3$Ru$_2$O$_7$ spectra feature only intra-$t_{2g}$ ones that do not directly involve the Coulomb energy scale. As found in Ca$_2$RuO$_4$, we resolve two intra-$t_{2g}$ excitations in Ca$_3$Ru$_2$O$_7$. Moreover, the lowest lying excitation in Ca$_3$Ru$_2$O$_7$ shows a significant dispersion, revealing a collective character differently from what is observed in Ca$_2$RuO$_4$. Theoretical modelling supports the interpretation of this lowest energy excitation in Ca$_3$Ru$_2$O$_7$ as a magnetic transverse mode with multi-particle character, whereas the corresponding excitation in Ca$_2$RuO$_4$ is assigned to combined longitudinal and transverse spin modes. These fundamental differences are discussed in terms of the inequivalent magnetic ground-state manifestations in Ca$_2$RuO$_4$ and Ca$_3$Ru$_2$O$_7$.

قيم البحث

اقرأ أيضاً

117 - Lakshmi Das , Yang Xu , Tian Shang 2021
Ambipolar transport is a commonly occurring theme in semimetals and semiconductors. Here we present an analytical formulation of the conductivity for a two-band system. Electron and hole carrier densities and their respective conductivities are mappe d into a two-dimensional unit-less phase space. Provided that one of the carrier densities is known, the dimensionless phase space can be probed through magnetoresistance measurements. This formulation of the two-band model for conductivity is applied to magnetoresistance experiments on Ca$_3$Ru$_2$O$_7$. While previous such measurements focused on the low-temperature limit, we cover a broad temperature range and find negative magnetoresistance in an intermediate interval below the electronic transition at 48 K. The low-temperature magnetoresistance in Ca$_3$Ru$_2$O$_7$ is consistent with a two-band structure. However, the model fails to describe the full temperature and magnetic field dependence. Negative magnetoresistance found in an intermediate temperature range is, for example, not captured by this model. We thus conclude that the electronic and magnetic structure in this intermediate temperature range render the system beyond the most simple two-band model.
Resonant x-ray diffraction performed at the $rm L_{II}$ and $rm L_{III}$ absorption edges of Ru has been used to investigate the magnetic and orbital ordering in Ca$_2$RuO$_4$ single crystals. A large resonant enhancement due to electric dipole $2pto 4d$ transitions is observed at the wave-vector characteristic of antiferromagnetic ordering. Besides the previously known antiferromagnetic phase transition at $rm T_{N}=110$ K, an additional phase transition, between two paramagnetic phases, is observed around 260 K. Based on the polarization and azimuthal angle dependence of the diffraction signal, this transition can be attributed to orbital ordering of the Ru $t_{2g}$ electrons. The propagation vector of the orbital order is inconsistent with some theoretical predictions for the orbital state of Ca$_2$RuO$_4$.
101 - L. Das , F. Forte , R. Fittipaldi 2018
The strongly correlated insulator Ca$_{2}$RuO$_4$ is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high- resolution oxygen $K$-edge resonant inelastic X-ray scattering study of the antiferromagnetic Mott insulating state of Ca$_{2}$RuO$_4$. A set of low-energy ($sim$80 and 400 meV) and high-energy ($sim$1.3 and 2.2 eV) excitations are reported that show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modelling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveil the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by the Hunds coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca$_{2}$RuO$_4$.
243 - D. Puggioni , M. Horio , J. Chang 2020
The antiferromagnetic Ruddlesden-Popper ruthenate Ca$_3$Ru$_2$O$_7$ is a model polar metal, combining inversion symmetry breaking with metallic conductivity; however, its low temperature ($T < 48$ K) crystal structure and Fermi surface topology remai n ambiguous despite numerous measurements and theoretical studies. Here we perform both first principles calculations with static correlations and angle resolved photoelectron spectroscopy experiments to construct a complete model of Ca$_3$Ru$_2$O$_7$, reconciling inconsistencies among interpretations of electrical transport, thermopower measurements, and momentum- and energy-resolved band dispersions. The solution relies on treating the interplay among Coulomb repulsion, magnetic ordering, spin-orbit interactions, and the RuO$_6$ octahedral degrees-of-freedom on equal footing. For temperatures $30<T < 48$ K, we propose weak electron-electron interactions produce a symmetry-preserving metal-semimetal transition with Weyl nodes in proximity to the Fermi level, whereas a new orthorhombic $Pn2_1a$ structure emerges for $T<30$ K, exhibiting charge and spin density waves from enhanced Coulombic interactions.
352 - M. Horio , Q. Wang , V. Granata 2019
Electronic band structures in solids stem from a periodic potential reflecting the structure of either the crystal lattice or an electronic order. In the stoichiometric ruthenate Ca$_3$Ru$_2$O$_7$, numerous Fermi surface sensitive probes indicate a l ow-temperature electronic reconstruction. Yet, the causality and the reconstructed band structure remain unsolved. Here, we show by angle-resolved photoemission spectroscopy, how in Ca$_3$Ru$_2$O$_7$ a $C_2$-symmetric massive Dirac semimetal is realized through a Brillouin-zone preserving electronic reconstruction. This Dirac semimetal emerges in a two-stage transition upon cooling. The Dirac point and band velocities are consistent with constraints set by quantum oscillation, thermodynamic, and transport experiments, suggesting that the complete Fermi surface is resolved. The reconstructed structure -- incompatible with translational-symmetry-breaking density waves -- serves as an important test for band structure calculations of correlated electron systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا