ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a Multi-Scale Boosted Dehazing Network with Dense Feature Fusion based on the U-Net architecture. The proposed method is designed based on two principles, boosting and error feedback, and we show that they are suitable for the dehazing problem. By incorporating the Strengthen-Operate-Subtract boosting strategy in the decoder of the proposed model, we develop a simple yet effective boosted decoder to progressively restore the haze-free image. To address the issue of preserving spatial information in the U-Net architecture, we design a dense feature fusion module using the back-projection feedback scheme. We show that the dense feature fusion module can simultaneously remedy the missing spatial information from high-resolution features and exploit the non-adjacent features. Extensive evaluations demonstrate that the proposed model performs favorably against the state-of-the-art approaches on the benchmark datasets as well as real-world hazy images.
In this paper, we propose an end-to-end feature fusion at-tention network (FFA-Net) to directly restore the haze-free image. The FFA-Net architecture consists of three key components: 1) A novel Feature Attention (FA) module combines Channel Attent
We propose an end-to-end trainable Convolutional Neural Network (CNN), named GridDehazeNet, for single image dehazing. The GridDehazeNet consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can
Single image dehazing is a challenging ill-posed problem that has drawn significant attention in the last few years. Recently, convolutional neural networks have achieved great success in image dehazing. However, it is still difficult for these incre
We propose an enhanced multi-scale network, dubbed GridDehazeNet+, for single image dehazing. It consists of three modules: pre-processing, backbone, and post-processing. The trainable pre-processing module can generate learned inputs with better div
To achieve more accurate 2D human pose estimation, we extend the successful encoder-decoder network, simple baseline network (SBN), in three ways. To reduce the quantization errors caused by the large output stride size, two more decoder modules are