ﻻ يوجد ملخص باللغة العربية
Solid state systems with time reversal symmetry and/or particle-hole symmetry often only have $mathbb{Z}_2$-valued strong invariants for which no general local formula is known. For physically relevant values of the parameters, there may exist approximate symmetries or almost conserved observables, such as the spin in a quantum spin Hall system with small Rashba coupling. It is shown in a general setting how this allows to define robust integer-valued strong invariants stemming from the complex theory, such as the spin Chern numbers, which modulo $2$ are equal to the $mathbb{Z}_2$-invariants. Moreover, these integer invariants can be computed using twist
We consider a gapped periodic quantum system with time-reversal symmetry of fermionic (or odd) type, i.e. the time-reversal operator squares to -1. We investigate the existence of periodic and time-reversal invariant Bloch frames in dimensions 2 and
We present a general algorithm constructing a discretization of a classical field theory from a Lagrangian. We prove a new discrete Noether theorem relating symmetries to conservation laws and an energy conservation theorem not based on any symmetry.
For a large class of physically relevant operators on a manifold with discrete group action, we prove general results on the (non-)existence of a basis of smooth well-localised Wannier functions for their spectral subspaces. This turns out to be equi
We carry out an extensive investigation of conservation laws and potential symmetries for the class of linear (1+1)-dimensional second-order parabolic equations. The group classification of this class is revised by employing admissible transformation
We investigate spin transport in 2-dimensional insulators, with the long-term goal of establishing whether any of the transport coefficients corresponds to the Fu-Kane-Mele index which characterizes 2d time-reversal-symmetric topological insulators.