ﻻ يوجد ملخص باللغة العربية
The notion of spectral localizer is extended to pairings with semifinite spectral triples. By a spectral flow argument, any semifinite index pairing is shown to be equal to the signature of the spectral localizer. As an application, a formula for the weak invariants of topological insulators is derived. This provides a new approach to their numerical evaluation.
Callias-type (or Dirac-Schrodinger) operators associated to abstract semifinite spectral triples are introduced and their indices are computed in terms of an associated index pairing derived from the spectral triple. The result is then interpreted as
We prove two results about nonunital index theory left open by [CGRS2]. The first is that the spectral triple arising from an action of the reals on a C*-algebra with invariant trace satisfies the hypotheses of the nonunital local index formula. The
We study Riesz means of eigenvalues of the Heisenberg Laplacian with Dirichlet boundary conditions on a cylinder in dimension three. We obtain an inequality with a sharp leading term and an additional lower order term.
The eigenvalues of the matrix structure $X + X^{(0)}$, where $X$ is a random Gaussian Hermitian matrix and $X^{(0)}$ is non-random or random independent of $X$, are closely related to Dyson Brownian motion. Previous works have shown how an infinite h
We consider the operator $H={d^4dt^4}+{ddt}p{ddt}+q$ with 1-periodic coefficients on the real line. The spectrum of $H$ is absolutely continuous and consists of intervals separated by gaps. We describe the spectrum of this operator in terms of the Ly