ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray Binary Luminosity Function Scaling Relations in Elliptical Galaxies: Evidence for Globular Cluster Seeding of Low-Mass X-ray Binaries in Galactic Fields

414   0   0.0 ( 0 )
 نشر من قبل Bret Lehmer
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate X-ray binary (XRB) luminosity function (XLF) scaling relations for Chandra detected populations of low-mass XRBs (LMXBs) within the footprints of 24 early-type galaxies. Our sample includes Chandra and HST observed galaxies at D < 25 Mpc that have estimates of the globular cluster (GC) specific frequency (SN) reported in the literature. As such, we are able to directly classify X-ray-detected sources as being either coincident with unrelated background/foreground objects, GCs, or sources that are within the fields of the galaxy targets. We model the GC and field LMXB population XLFs for all galaxies separately, and then construct global models characterizing how the LMXB XLFs vary with galaxy stellar mass and SN. We find that our field LMXB XLF models require a component that scales with SN, and has a shape consistent with that found for the GC LMXB XLF. We take this to indicate that GCs are seeding the galactic field LMXB population, through the ejection of GC-LMXBs and/or the diffusion of the GCs in the galactic fields themselves. However, we also find that an important LMXB XLF component is required for all galaxies that scales with stellar mass, implying that a substantial population of LMXBs are formed in situ, which dominates the LMXB population emission for galaxies with SN < 2. For the first time, we provide a framework quantifying how directly-associated GC LMXBs, GC-seeded LMXBs, and in-situ LMXBs contribute to LMXB XLFs in the broader early-type galaxy population.

قيم البحث

اقرأ أيضاً

We present new Chandra constraints on the X-ray luminosity functions (XLFs) of X-ray binary (XRB) populations, and their scaling relations, for a sample of 38 nearby galaxies (D = 3.4-29 Mpc). Our galaxy sample is drawn primarily from the Spitzer inf rared nearby galaxy survey (SINGS), and contains a wealth of Chandra (5.8 Ms total) and multiwavelength data, allowing for star-formation rates (SFRs) and stellar masses (M*) to be measured on subgalactic scales. We divided the 2478 X-ray detected sources into 21 subsamples in bins of specific-SFR (sSFR = SFR/M*) and constructed XLFs. To model the XLF dependence on sSFR, we fit a global XLF model, containing contributions from high-mass XRBs (HMXBs), low-mass XRBs (LMXBs), and background sources from the cosmic X-ray background (CXB) that respectively scale with SFR, M*, and sky area. We find an HMXB XLF that is more complex in shape than previously reported and an LMXB XLF that likely varies with sSFR, potentially due to an age dependence. When applying our global model to XLF data for each individual galaxy, we discover a few galaxy XLFs that significantly deviate from our model beyond statistical scatter. Most notably, relatively low-metallicity galaxies have an excess of HMXBs above ~10^38 erg/s and elliptical galaxies that have relatively rich populations of globular clusters (GCs) show excesses of LMXBs compared to the global model. Additional modeling of how the XRB XLF depends on stellar age, metallicity, and GC specific frequency is required to sufficiently characterize the XLFs of galaxies.
77 - M.Revnivtsev 2010
We analyze a flux-limited sample of persistent and bright (with 2-10 keV fluxes exceeding 1.4e-10 erg/s/cm2) low-mass X-ray binaries (LMXBs) in our Galaxy. It is demonstrated that the majority of binary systems with X-ray luminosities below logL(erg/ sec)~37.3 have unevolved secondary companions (except for those with white dwarf donors), while systems with higher X-ray luminosity predominantly harbor giant donors. Mass transfer in binary systems with giants significantly shortens their life time thus steepening the X-ray luminosity function of LMXBs at high luminosity. We argue that this is the reason why the LMXB luminosity function constructed in the last years from observations of sources in our and distant galaxies demonstrates a break at logL(erg/sec)~37.3.
We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-r ay point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the young early-type galaxy NGC 3384 (~2-5 Gyr) has an excess of luminous field LMXBs (L_X > (5-10) x 10^37 erg/s) per unit K-band luminosity (L_K; a proxy for stellar mass) than the old early-type galaxies NGC 3115 and 3379 (~8-10 Gyr), which results in a factor of ~2-3 excess of LX/LK for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
We present the X-ray luminosity function (XLF) of low mass X-ray binaries (LMXBs) in the globular clusters (GCs) and fields of seven early-types galaxies. These galaxies are selected to have both deep Chandra observations, which allow their LMXB popu lations to be observed to X-ray luminosities of $10^{37}-10^{38}$ erg/s, and HST optical mosaics which enable the X-ray sources to be separated into field LMXBs, GC LMXBs, and contaminating background and foreground sources. We find that at all luminosities the number of field LMXBs per stellar mass is similar in these galaxies. This suggests that the field LMXB populations in these galaxies are not effected by the GC specific frequency, and that properties such as binary fraction and the stellar initial mass function are either similar across the sample, or change in a way that does not effect the number of LMXBs. We compare the XLF of the field LMXBs to that of the GC LMXBs and find that they are significantly different with a p-value of $3times10^{-6}$ (equivalent to 4.7$sigma$ for a normal distribution). The difference is such that the XLF of the GC LMXBs is flatter than that of the field LMXBs, with the GCs hosting relatively more bright sources and fewer faint sources. A comparison of the XLF of the metal-rich and metal-poor GCs hints that the metal-poor GCs may have more bright LMXBs, but the difference is not statistically significant.
The X-ray emission from normal elliptical galaxies has two major components: soft emission from diffuse gas and harder emission from populations of accreting (low-mass) stellar X-ray binaries (LMXB). If LMXB populations are tied to the field stellar populations in galaxies, their total X-ray luminosities should be proportional to the optical luminosities of galaxies. However, recent ASCA and Chandra X-ray observations show that the global luminosities of LMXB components in ellipticals exhibit significant scatter at a given optical luminosity. This scatter may reflect a range of evolutionary stages among LMXB populations in ellipticals of different ages. If so, the ratio of the global LMXB X-ray luminosity to the galactic optical luminosity, L_LMXB/L_opt, may be used to determine when the bulk of stars were formed in individual ellipticals. To test this, we compare variations in L_LMXB/L_opt for LMXB populations in ellipticals to optically-derived estimates of stellar ages in the same galaxies. We find no correlation, implying that L_LMXB/L_opt variations are not good age indicators for ellipticals. Alternatively, LMXBs may be formed primarily in globular clusters (through stellar tidal interactions), rather than in the stellar fields of galaxies. Since elliptical galaxies exhibit a wide range of globular cluster populations for a given galaxian luminosity, this may induce a dispersion in the LMXB populations of ellipticals with similar optical luminosities. Indeed, we find that L_LMXB/L_opt ratios for LMXB populations are strongly correlated with the specific globular cluster frequencies in elliptical galaxies. This suggests that most LMXBs were formed in globular clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا