ترغب بنشر مسار تعليمي؟ اضغط هنا

Eclipsing binaries in the open cluster Ruprecht 147. III: The triple system EPIC 219552514 at the main-sequence turnoff

316   0   0.0 ( 0 )
 نشر من قبل Guillermo Torres
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guillermo Torres




اسأل ChatGPT حول البحث

Spectroscopic observations are reported for the 2.75 day, double-lined, detached eclipsing binary EPIC 219552514 located at the turnoff of the old nearby open cluster Ruprecht 147. A joint analysis of our radial velocity measurements and the K2 light curve leads to masses of M1 = 1.509 (+0.063 / -0.056) MSun and M2 = 0.649 (+0.015 / -0.014) MSun for the primary and secondary, along with radii of R1 = 2.505 (+0.026 / -0.031) RSun and R2 = 0.652 (+0.013 / -0.012) RSun, respectively. The effective temperatures are 6180 +/- 100 K for the F7 primary and 4010 +/- 170 K for the late K secondary. The orbit is circular, and the stars rotation appears to be synchronized with the orbital motion. This is the third eclipsing system analyzed in the same cluster, following our earlier studies of EPIC 219394517 and EPIC 219568666. By comparison with stellar evolution models from the PARSEC series, we infer an age of 2.67 (+0.39 / -0.55) Gyr that is consistent with the estimates for the other two systems. EPIC 219552514 is a hierarchical triple system, with the period of the slightly eccentric outer orbit being 463 days. The unseen tertiary is either a low-mass M dwarf or a white dwarf.

قيم البحث

اقرأ أيضاً

244 - Guillermo Torres 2021
We report follow-up spectroscopic observations of the 1.62 day, K-type, detached, active, near-circular, double-lined eclipsing binary EPIC 219511354 in the open cluster Ruprecht 147, identified previously on the basis of photometric observations fro m the Kepler/K2 mission. This is the fourth eclipsing system analyzed in this cluster. A combined analysis of the light curve and radial velocities yields accurate masses of M(Aa) = 0.912 +/- 0.013 MSun and M(Ab) = 0.822 +/- 0.010 MSun for the primary (star Aa) and secondary (Ab), along with radii of R(Aa) = 0.920 +/- 0.016 RSun and R(Ab) = 0.851 +/- 0.016 RSun, and effective temperatures of 5035 +/- 150 and 4690 +/- 130 K, respectively. Comparison with current models of stellar evolution for the known age and metallicity of the cluster reveals that both radii are larger (by 10--14%) and both temperatures cooler (by $sim$6%) than theoretically predicted, as is often seen in M dwarfs. This is likely caused by the significant stellar activity in the system, manifested here by 6% peak-to-peak out-of-eclipse variability, a filled-in H$alpha$ line, and its detection as an X-ray source. We also find EPIC 219511354 to be a hierarchical triple system, with a low-mass tertiary in an eccentric 220 day orbit.
241 - Guillermo Torres 2019
We report our spectroscopic monitoring of the detached, grazing, and slightly eccentric 12-day double-lined eclipsing binary EPIC 219568666 in the old nearby open cluster Ruprecht 147. This is the second eclipsing system to be analyzed in this cluste r, following our earlier study of EPIC 219394517. Our analysis of the radial velocities combined with the light curve from the K2 mission yield absolute masses and radii for EPIC 219568666 of M1 = 1.121 +/- 0.013 M(Sun) and R1 = 1.1779 +/- 0.0070 R(Sun) for the F8 primary, and M2 = 0.7334 +/- 0.0050 M(Sun) and R2 = 0.640 +/- 0.017 R(Sun) for the faint secondary. Comparison with current stellar evolution models calculated for the known metallicity of the cluster points to a primary star that is oversized, as is often seen in active M dwarfs, but this seems rather unlikely for a star of its mass and with a low level of activity. Instead, we suspect a subtle bias in the radius ratio inferred from the photometry, despite our best efforts to avoid it, which may be related to the presence of spots on one or both stars. The radius sum for the binary, which bypasses this possible problem, indicates an age of 2.76 +/- 0.61 Gyr that is in good agreement with a similar estimate from the binary in our earlier study.
Eclipsing binaries in star clusters offer more stringent tests of stellar evolution theory than field binaries because models must not only match the binary properties, but also the radiative properties of all other cluster members at a single chemic al composition and a single age. Here we report new spectroscopic observations of the G type, detached eclipsing binary EPIC 219394517 in the open cluster Ruprecht 147 ([Fe/H] = +0.10), which was observed in late 2015 by the K2 mission. A joint analysis of our radial-velocity measurements and the K2 light curve shows the 6.5 day orbit to be very nearly circular. We derive highly precise masses of 1.0782 +/- 0.0019 Msun and 1.0661 (+0.0027/-0.0021) Msun, radii of 1.055 +/- 0.011 Rsun and 1.042 +/- 0.012 Rsun, and effective temperatures of 5930 +/- 100 K and 5880 +/- 100 K for the primary and secondary, respectively. The distance we infer, 283 (+18/-16) pc, corresponds to a parallax in good agreement with the Gaia/DR2 value for the star. Current stellar evolution models from the MIST and PARSEC series match the above physical properties very well at ages of 2.48 and 2.65 Gyr. Isochrones for these same ages and the measured composition, along with our reddening estimate for EPIC 219394517, also show generally good agreement with the optical and near-infrared color-magnitude diagrams of the cluster, which can be constructed with no free parameters as the distances of all member stars are known from Gaia.
We report the discovery of EPIC 219388192 b, a transiting brown dwarf in a 5.3-day orbit around a member star of Ruprecht-147, the oldest nearby open cluster association, which was photometrically monitored by K2 during its Campaign 7. We combine the K2 time-series data with ground-based adaptive optics imaging and high resolution spectroscopy to rule out false positive scenarios and determine the main parameters of the system. EPIC 219388192 b has a radius of $R_mathrm{b}$=$0.937pm0.042$~$mathrm{R_{Jup}}$ and mass of $M_mathrm{b}$=$36.50pm0.09$~$mathrm{M_{Jup}}$, yielding a mean density of $59.0pm8.1$~$mathrm{g,cm^{-3}}$. The host star is nearly a Solar twin with mass $M_star$=$0.99pm0.05$~$mathrm{M_{odot}}$, radius $R_star$=$1.01pm0.04$~$mathrm{R_{odot}}$, effective temperature $mathrm{T_{eff}}$=$5850pm85$~K and iron abundance [Fe/H]=$0.03pm0.08$~dex. Its age, spectroscopic distance, and reddening are consistent with those of Ruprecht-147, corroborating its cluster membership. EPIC 219388192 b is the first brown dwarf with precise determinations of mass, radius and age, and serves as benchmark for evolutionary models in the sub-stellar regime.
Intermediate-age star clusters in the LMC present extended main sequence turnoffs (MSTO) that have been attributed to either multiple stellar populations or an effect of stellar rotation. Recently it has been proposed that these extended main sequenc es can also be produced by ill-characterized stellar variability. Here we present Gemini-S/GMOS time series observations of the intermediate-age cluster NGC 1846. Using differential image analysis, we identified 73 new variable stars, with 55 of those being of the Delta Scuti type, that is, pulsating variables close the MSTO for the cluster age. Considering completeness and background contamination effects we estimate the number of Delta Scuti belonging to the cluster between 40 and 60 members, although this number is based on the detection of a single Delta Scuti within the cluster half-light radius. This amount of variable stars at the MSTO level will not produce significant broadening of the MSTO, albeit higher resolution imaging will be needed to rule out variable stars as a major contributor to the extended MSTO phenomenon. Though modest, this amount of Delta Scuti makes NGC 1846 the star cluster with the highest number of these variables ever discovered. Lastly, our results are a cautionary tale about the adequacy of shallow variability surveys in the LMC (like OGLE) to derive properties of its Delta Scuti population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا