ﻻ يوجد ملخص باللغة العربية
A central question on Kitaev materials is the effects of additional couplings on the Kitaev model which is proposed to be a candidate for realizing topological quantum computations. However, two spatial dimension typically suffers the difficulty of lacking controllable approaches. In this work, using a combination of powerful analytical and numerical methods available in one dimension, we perform a comprehensive study on the phase diagram of a one-dimensional version of the spin-1/2 Kitaev-Heisenberg-Gamma model in its full parameter space. A strikingly rich phase diagram is found with nine distinct phases, including four Luttinger liquid phases, a ferromagnetic phase, a Neel ordered phase, an ordered phase of distorted-spiral spin alignments, and two ordered phase which both break a $D_3$ symmetry albeit in different ways, where $D_3$ is the dihedral group of order six. Our work paves the way for studying one-dimensional Kitaev materials and may provide hints to the physics in higher dimensional situations.
We study the phase diagram of a one-dimensional version of the Kitaev spin-1/2 model with an extra ``$Gamma$-term, using analytical, density matrix renormalization group and exact diagonalization methods. Two intriguing phases are found. In the gaple
Recently, it has been proposed that higher-spin analogues of the Kitaev interactions $K>0$ may also occur in a number of materials with strong Hunds and spin-orbit coupling. In this work, we use Lanczos diagonalization and density matrix renormalizat
A minimal Kitaev-Gamma model has been recently investigated to understand various Kitaev systems. In the one-dimensional Kitaev-Gamma chain, an emergent SU(2)$_1$ phase and a rank-1 spin ordered phase with $O_hrightarrow D_4$ symmetry breaking were i
By using the infinite time-evolving block decimation, we study quantum fidelity and entanglement entropy in the spin-1/2 Heisenberg alternating chain under an external magnetic field. The effects of the magnetic field on the fidelity are investigated
The global phase diagram of a doped Kitaev-Heisenberg model is studied using an SU(2) slave-boson mean-field method. Near the Kitaev limit, p-wave superconducting states which break the time-reversal symmetry are stabilized as reported by You {it et