ﻻ يوجد ملخص باللغة العربية
The prevalent modus operandi within the framework of quantum resource theories has been to characterise and harness the resources within single objects, in what we can call emph{single-object} quantum resource theories. One can wonder however, whether the resources contained within multiple different types of objects, now in a emph{multi-object} quantum resource theory, can simultaneously be exploited for the benefit of an operational task. In this work, we introduce examples of such multi-object operational tasks in the form of subchannel discrimination and subchannel exclusion games, in which the player harnesses the resources contained within a state-measurement pair. We prove that for any state-measurement pair in which either of them is resourceful, there exist discrimination and exclusion games for which such a pair outperforms any possible free state-measurement pair. These results hold for arbitrary convex resources of states, and arbitrary convex resources of measurements for which classical post-processing is a free operation. Furthermore, we prove that the advantage in these multi-object operational tasks is determined, in a multiplicative manner, by the resource quantifiers of: emph{generalised robustness of resource} of both state and measurement for discrimination games and emph{weight of resource} of both state and measurement for exclusion games.
We introduce the resource quantifier of weight of resource for convex quantum resource theories of states with arbitrary resources. We show that it captures the advantage that a resourceful state offers over all possible free states, in the operation
Quantum resource theories (QRTs) offer a highly versatile and powerful framework for studying different phenomena in quantum physics. From quantum entanglement to quantum computation, resource theories can be used to quantify a desirable quantum effe
Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems, their dynamics, and interaction. Since the inception of quantum theory, it has been debated wh
Quantum resource theories offer a powerful framework for studying various phenomena in quantum physics. Despite considerable effort has been devoted to developing a unified framework of resource theories, there are few common properties that hold for
We investigate the conditions under which an uncontrollable background processes may be harnessed by an agent to perform a task that would otherwise be impossible within their operational framework. This situation can be understood from the perspecti