ﻻ يوجد ملخص باللغة العربية
We prove three main conjectures of Berkovich and Uncu (Ann. Comb. 23 (2019) 263--284) on the inequalities between the numbers of partitions of $n$ with bounded gap between largest and smallest parts for sufficiently large $n$. Actually our theorems are stronger than their original conjectures. The analytic version of our results shows that the coefficients of some partition $q$-series are eventually positive.
For a graph $G$, let $cp(G)$ denote the minimum number of cliques of $G$ needed to cover the edges of $G$ exactly once. Similarly, let $bp_k(G)$ denote the minimum number of bicliques (i.e. complete bipartite subgraphs of $G$) needed to cover each ed
Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in set partitions. Let $A_{n,k}$ denote the number of partitions of ${1,2,dots, n+1}$ with t
Recently, Deutsch and Elizalde studied the largest and the smallest fixed points of permutations. Motivated by their work, we consider the analogous problems in weighted set partitions. Let $A_{n,k}(mathbf{t})$ denote the total weight of partitions o
In this note we show that for each Latin square $L$ of order $ngeq 2$, there exists a Latin square $L eq L$ of order $n$ such that $L$ and $L$ differ in at most $8sqrt{n}$ cells. Equivalently, each Latin square of order $n$ contains a Latin trade of
We define the notion of asymptotically free for locally restricted compositions, which means roughly that large parts can often be replaced by any larger parts. Two well-known examples are Carlitz and alternating compositions. We show that large part