ﻻ يوجد ملخص باللغة العربية
Vector magnetogram data are often used as photospheric boundary conditions for force-free coronal magnetic field extrapolations. In general, however, vector magnetogram data are not consistent with the force-free assumption. In this article, we demonstrate a way to deal with inconsistent boundary data, by generalizing the self-consistency procedure of Wheatland & Regnier (2009). In that procedure, the inconsistency is resolved by an iterative process of constructing two solutions based on the values of the force-free parameter alpha on the two polarities of the field in the boundary (the P and N polarities), and taking uncertainty-weighted averages of the boundary alpha values in the P and N solutions. When the alpha values in the P and N regions are very different, the self-consistent solution may lose high alpha values from the boundary conditions. We show how, by altering the weighting of the uncertainties in the P or N boundary conditions, we can preserve high alpha values in the self-consistent solution. The weighted self-consistent extrapolation method is demonstrated on an analytic bipole field and applied to vector magnetogram data taken by the Helioseismic and Magnetic Imager (HMI) instrument for NOAA active region AR 12017 on 2014 March 29.
The SDO/HMI instruments provide photospheric vector magnetograms with a high spatial and temporal resolution. Our intention is to model the coronal magnetic field above active regions with the help of a nonlinear force-free extrapolation code. Our co
We study the relative helicity of active region (AR) NOAA~12673 during a ten-hour time interval centered around a preceding X2.2 flare (SOL2017-09-06T08:57) and also including an eruptive X9.3 flare that occurred three hours later (SOL2017-09-06T11:5
This paper has been withdrawn by the authors.
We apply our method of indirect integration, described in Part I, at fourth order, to the radial fall affected by the self-force. The Mode-Sum regularisation is performed in the Regge-Wheeler gauge using the equivalence with the harmonic gauge for th
We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited