ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Messenger Searches in Astrophysics

62   0   0.0 ( 0 )
 نشر من قبل Kathrin Egberts
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kathrin Egberts




اسأل ChatGPT حول البحث

Multi-messenger astronomy has experienced an explosive development in the past few years. While not being a particularly young field, it has recently attracted a lot of attention by several major discoveries and unprecedented observation campaigns covering the entity of the electromagnetic spectrum as well as observations of cosmic rays, neutrinos, and gravitational waves. The exploration of synergies is in full steam and requires close cooperation between different instruments. Here I give an overview over the subject of multi-messenger astronomy and its virtues compared to classical single messenger observations, present the recent break throughs of the field, and discuss some of its organisational and technical challenges.

قيم البحث

اقرأ أيضاً

Pulsar timing arrays (PTAs) are on the verge of detecting low-frequency gravitational waves (GWs) from supermassive black hole binaries (SMBHBs). With continued observations of a large sample of millisecond pulsars, PTAs will reach this major milesto ne within the next decade. Already, SMBHB candidates are being identified by electromagnetic surveys in ever-increasing numbers; upcoming surveys will enhance our ability to detect and verify candidates, and will be instrumental in identifying the host galaxies of GW sources. Multi-messenger (GW and electromagnetic) observations of SMBHBs will revolutionize our understanding of the co-evolution of SMBHs with their host galaxies, the dynamical interactions between binaries and their galactic environments, and the fundamental physics of accretion. Multi-messenger observations can also make SMBHBs standard sirens for cosmological distance measurements out to $zsimeq0.5$. LIGO has already ushered in breakthrough insights in our knowledge of black holes. The multi-messenger detection of SMBHBs with PTAs will be a breakthrough in the years $2020-2030$ and beyond, and prepare us for LISA to help complete our views of black hole demographics and evolution at higher redshifts.
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a NASA Astrophysics probe-class mission designed to observe ultra-high energy cosmic rays (UHECRs) and cosmic neutrinos from space. Astro2020 APC white paper: Medium-class Space Particle Astrophysics Project.
63 - G. Stratta , R. Ciolfi , L. Amati 2017
The recent discovery of the electromagnetic counterpart of the gravitational wave source GW170817, has demonstrated the huge informative power of multi-messenger observations. During the next decade the nascent field of multi-messenger astronomy will mature significantly. Around 2030, third generation gravitational wave detectors will be roughly ten times more sensitive than the current ones. At the same time, neutrino detectors currently upgrading to multi km^3 telescopes, will include a 10 km^3 facility in the Southern hemisphere that is expected to be operational around 2030. In this review, we describe the most promising high frequency gravitational wave and neutrino sources that will be detected in the next two decades. In this context, we show the important role of the Transient High Energy Sky and Early Universe Surveyor (THESEUS), a mission concept proposed to ESA by a large international collaboration in response to the call for the Cosmic Vision Programme M5 missions. THESEUS aims at providing a substantial advancement in early Universe science as well as playing a fundamental role in multi-messenger and time-domain astrophysics, operating in strong synergy with future gravitational wave and neutrino detectors as well as major ground- and space-based telescopes. This review is an extension of the THESEUS white paper (Amati et al. 2017), also in light of the discovery of GW170817/GRB170817A that was announced on October 16th, 2017.
The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques wi ll allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators.
Multi-messenger astrophysics is becoming a major avenue to explore the Universe, with the potential to span a vast range of redshifts. The growing synergies between different probes is opening new frontiers, which promise profound insights into sever al aspects of fundamental physics and cosmology. In this context, THESEUS will play a central role during the 2030s in detecting and localizing the electromagnetic counterparts of gravitational wave and neutrino sources that the unprecedented sensitivity of next generation detectors will discover at much higher rates than the present. Here, we review the most important target signals from multi-messenger sources that THESEUS will be able to detect and characterize, discussing detection rate expectations and scientific impact.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا