ترغب بنشر مسار تعليمي؟ اضغط هنا

SpecPhot: A Comparison of Spectroscopic and Photometric Exoplanet Follow-Up Methods

126   0   0.0 ( 0 )
 نشر من قبل Benjamin Cooke MSc
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We set out a simulation to explore the follow-up of exoplanet candidates. We look at comparing photometric (transit method) and spectroscopic (Doppler shift method) techniques using three instruments: NGTS, HARPS and CORALIE. We take into account precision of follow-up and required observing time in attempt to rank each method for a given set of planetary system parameters. The methods are assessed on two criteria, SNR of the detection and follow-up time before characterisation. We find that different follow-up techniques are preferred for different regions of parameter space. For SNR we find that the ratio of spectroscopic to photometric SNR for a given system goes like $R_p/P^{frac{1}{3}}$. For follow-up time we find that photometry is favoured for the shortest period systems ($<10$ d) as well as systems with small planet radii. Spectroscopy is then preferred for systems with larger radius, and thus more massive, planets (given our assumed mass-radius relationship). Finally, we attempt to account for availability of telescopes and weight the two methods accordingly.

قيم البحث

اقرأ أيضاً

Due to the efforts by numerous ground-based surveys and NASAs Kepler and TESS, there will be hundreds, if not thousands, of transiting exoplanets ideal for atmospheric characterization via spectroscopy with large platforms such as JWST and ARIEL. How ever their next predicted mid-transit time could become so increasingly uncertain over time that significant overhead would be required to ensure the detection of the entire transit. As a result, follow-up observations to characterize these exoplanetary atmospheres would require less-efficient use of an observatorys time---which is an issue for large platforms where minimizing observing overheads is a necessity. Here we demonstrate the power of citizen scientists operating smaller observatories ($le$1-m) to keep ephemerides fresh, defined here as when the 1$sigma$ uncertainty in the mid-transit time is less than half the transit duration. We advocate for the creation of a community-wide effort to perform ephemeris maintenance on transiting exoplanets by citizen scientists. Such observations can be conducted with even a 6-inch telescope, which has the potential to save up to $sim$10,000~days for a 1000-planet survey. Based on a preliminary analysis of 14 transits from a single 6-inch MicroObservatory telescope, we empirically estimate the ability of small telescopes to benefit the community. Observations with a small-telescope network operated by citizen scientists are capable of resolving stellar blends to within 5/pixel, can follow-up long period transits in short-baseline TESS fields, monitor epoch-to-epoch stellar variability at a precision 0.67%$pm$0.12% for a 11.3 V-mag star, and search for new planets or constrain the masses of known planets with transit timing variations greater than two minutes.
We present precision transit observations of the Neptune-sized planets K2-28b and K2-100b, using the Engineered Diffuser on the ARCTIC imager on the ARC 3.5m Telescope at Apache Point Observatory. K2-28b is a $R_{p} = 2.56 R_oplus$ mini-Neptune trans iting a bright (J=11.7) metal-rich M4 dwarf, offering compelling prospects for future atmospheric characterization. K2-100b is a $R_{p} = 3.45 R_oplus$ Neptune in the Praesepe Cluster and is one of few planets known in a cluster transiting a host star bright enough ($V=10.5$) for precision radial velocity observations. Using the precision photometric capabilities of the diffuser/ARCTIC system, allows us to achieve a precision of $105^{+87}_{-37}$ppm, and $38^{+21}_{-11}$ppm in 30 minute bins for K2-28b, and K2-100b, respectively. Our joint-fits to the K2 and ground-based light-curves give an order of magnitude improvement in the orbital ephemeris for both planets, yielding a timing precision of 2min in the JWST era. Although we show that the currently available broad-band measurements of K2-28bs radius are currently too imprecise to place useful constraints on K2-28bs atmosphere, we demonstrate that JWST/NIRISS will be able to discern between a cloudy/clear atmosphere in a modest number of transit observations. Our light-curve of K2-100b marks the first transit follow-up observation of this challenging-to-observe transit, where we obtain a transit depth of $819 pm 50 mathrm{ppm}$ in the SDSS $i^prime$ band. We conclude that diffuser-assisted photometry can play an important role in the TESS era to perform timely and precise follow-up of the expected bounty of TESS planet candidates.
Ariel has been selected as the next ESA M4 science mission and it is expected to be launched in 2028. During its 4-year mission, Ariel will observe the atmospheres of a large and diversified population of transiting exoplanets. A key factor for the a chievement of the scientific goal of Ariel is the selection strategy for the definition of the input target list. A meaningful choice of the targets requires an accurate knowledge of the planet hosting star properties and this is necessary to be obtained well before the launch. In this work, we present the results of a bench-marking analysis between three different spectroscopic techniques used to determine stellar parameters for a selected number of targets belonging to the Ariel reference sample. We aim to consolidate a method that will be used to homogeneously determine the stellar parameters of the complete Ariel reference sample. Homogeneous, accurate and precise derivation of stellar parameters is crucial for characterizing exoplanet-host stars and in turn is a key factor for the accuracy of the planet properties.
We report a framework for spectroscopic follow-up design for optimizing supernova photometric classification. The strategy accounts for the unavoidable mismatch between spectroscopic and photometric samples, and can be used even in the beginning of a new survey -- without any initial training set. The framework falls under the umbrella of active learning (AL), a class of algorithms that aims to minimize labelling costs by identifying a few, carefully chosen, objects which have high potential in improving the classifier predictions. As a proof of concept, we use the simulated data released after the Supernova Photometric Classification Challenge (SNPCC) and a random forest classifier. Our results show that, using only 12% the number of training objects in the SNPCC spectroscopic sample, this approach is able to double purity results. Moreover, in order to take into account multiple spectroscopic observations in the same night, we propose a semi-supervised batch-mode AL algorithm which selects a set of $N=5$ most informative objects at each night. In comparison with the initial state using the traditional approach, our method achieves 2.3 times higher purity and comparable figure of merit results after only 180 days of observation, or 800 queries (73% of the SNPCC spectroscopic sample size). Such results were obtained using the same amount of spectroscopic time necessary to observe the original SNPCC spectroscopic sample, showing that this type of strategy is feasible with current available spectroscopic resources. The code used in this work is available in the COINtoolbox: https://github.com/COINtoolbox/ActSNClass .
70 - S.A. Macfarlane 2016
We present photometric and spectroscopic follow-up observations of short-period variables discovered in the OmegaWhite survey: a wide-field high-cadence g-band synoptic survey targeting the Galactic Plane. We have used fast photometry on the SAAO 1.0 -m and 1.9-m telescopes to obtain light curves of 27 variables, and use these results to validate the period and amplitude estimates from the OmegaWhite processing pipeline. Furthermore, 57 sources (44 unique, 13 also with new light curves) were selected for spectroscopic follow-up using either the SAAO 1.9-m telescope or the Southern African Large Telescope. We find many of these variables have spectra which are consistent with being delta Scuti type pulsating stars. At higher amplitudes, we detect four possible pulsating white dwarf/subdwarf sources and an eclipsing cataclysmic variable. Due to their rarity, these targets are ideal candidates for detailed follow-up studies. From spectroscopy, we confirm the symbiotic binary star nature of two variables identified as such in the SIMBAD database. We also report what could possibly be the first detection of the `Bump Cepheid phenomena in a delta Scuti star, with OW J175848.21-271653.7 showing a pronounced 22% amplitude dip lasting 3 minutes during each pulsational cycle peak. However, the precise nature of this target is still uncertain as it exhibits the spectral features of a B-type star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا