ﻻ يوجد ملخص باللغة العربية
The atomic nucleus is made of protons and neutrons (nucleons), that are themselves composed of quarks and gluons. Understanding how the quark-gluon structure of a nucleon bound in an atomic nucleus is modified by the surrounding nucleons is an outstanding challenge. Although evidence for such modification, known as the EMC effect, was first observed over 35 years ago, there is still no generally accepted explanation of its cause. Recent observations suggest that the EMC effect is related to close-proximity Short Range Correlated (SRC) nucleon pairs in nuclei. Here we report the first simultaneous, high-precision, measurements of the EMC effect and SRC abundances. We show that the EMC data can be explained by a universal modification of the structure of nucleons in neutron-proton (np) SRC pairs and present the first data-driven extraction of this universal modification function. This implies that, in heavier nuclei with many more neutrons than protons, each proton is more likely than each neutron to belong to an SRC pair and hence to have its quark structure distorted.
Differential and total cross sections for the quasifree reactions $gamma prightarroweta p$ and $gamma nrightarroweta n$ have been determined at the MAMI-C electron accelerator using a liquid deuterium target. Photons were produced via bremsstrahlung
Total cross sections, angular distributions, and invariant-mass distributions have been measured for the photoproduction of $pi^0pi^0$ pairs off free protons and off nucleons bound in the deuteron. The experiments were performed at the MAMI accelerat
Experimental above-barrier fusion cross-sections for $^{17}$F + $^{12}$C are compared to the fusion excitation functions for $^{16,18}$O, $^{19}$F, and $^{20}$Ne ions on a carbon target. In comparing the different systems both the differing static si
Background: The high momentum distribution of atoms in two spin-state ultra-cold atomic gases with strong short-range interactions between atoms with different spins, which can be described using Tans contact, are dominated by short range pairs of di
For the first time, the total yield and inclusive spectra of the $Delta^{++}(1232)$isobar are measured in $ u p$ and $ u n$ charged-current interactions. An indication is obtained that the $Delta^{++}(1232)$ production mainly results from the neutrin