ترغب بنشر مسار تعليمي؟ اضغط هنا

An active learning high-throughput microstructure calibration framework for solving inverse structure-process problems in materials informatics

74   0   0.0 ( 0 )
 نشر من قبل Anh Tran
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Determining a process-structure-property relationship is the holy grail of materials science, where both computational prediction in the forward direction and materials design in the inverse direction are essential. Problems in materials design are often considered in the context of process-property linkage by bypassing the materials structure, or in the context of structure-property linkage as in microstructure-sensitive design problems. However, there is a lack of research effort in studying materials design problems in the context of process-structure linkage, which has a great implication in reverse engineering. In this work, given a target microstructure, we propose an active learning high-throughput microstructure calibration framework to derive a set of processing parameters, which can produce an optimal microstructure that is statistically equivalent to the target microstructure. The proposed framework is formulated as a noisy multi-objective optimization problem, where each objective function measures a deterministic or statistical difference of the same microstructure descriptor between a candidate microstructure and a target microstructure. Furthermore, to significantly reduce the physical waiting wall-time, we enable the high-throughput feature of the microstructure calibration framework by adopting an asynchronously parallel Bayesian optimization by exploiting high-performance computing resources. Case studies in additive manufacturing and grain growth are used to demonstrate the applicability of the proposed framework, where kinetic Monte Carlo (kMC) simulation is used as a forward predictive model, such that for a given target microstructure, the target processing parameters that produced this microstructure are successfully recovered.



قيم البحث

اقرأ أيضاً

146 - Anh Tran , Tim Wildey 2020
Determining process-structure-property linkages is one of the key objectives in material science, and uncertainty quantification plays a critical role in understanding both process-structure and structure-property linkages. In this work, we seek to l earn a distribution of microstructure parameters that are consistent in the sense that the forward propagation of this distribution through a crystal plasticity finite element model (CPFEM) matches a target distribution on materials properties. This stochastic inversion formulation infers a distribution of acceptable/consistent microstructures, as opposed to a deterministic solution, which expands the range of feasible designs in a probabilistic manner. To solve this stochastic inverse problem, we employ a recently developed uncertainty quantification (UQ) framework based on push-forward probability measures, which combines techniques from measure theory and Bayes rule to define a unique and numerically stable solution. This approach requires making an initial prediction using an initial guess for the distribution on model inputs and solving a stochastic forward problem. To reduce the computational burden in solving both stochastic forward and stochastic inverse problems, we combine this approach with a machine learning (ML) Bayesian regression model based on Gaussian processes and demonstrate the proposed methodology on two representative case studies in structure-property linkages.
Despite the great promise of the physics-informed neural networks (PINNs) in solving forward and inverse problems, several technical challenges are present as roadblocks for more complex and realistic applications. First, most existing PINNs are base d on point-wise formulation with fully-connected networks to learn continuous functions, which suffer from poor scalability and hard boundary enforcement. Second, the infinite search space over-complicates the non-convex optimization for network training. Third, although the convolutional neural network (CNN)-based discrete learning can significantly improve training efficiency, CNNs struggle to handle irregular geometries with unstructured meshes. To properly address these challenges, we present a novel discrete PINN framework based on graph convolutional network (GCN) and variational structure of PDE to solve forward and inverse partial differential equations (PDEs) in a unified manner. The use of a piecewise polynomial basis can reduce the dimension of search space and facilitate training and convergence. Without the need of tuning penalty parameters in classic PINNs, the proposed method can strictly impose boundary conditions and assimilate sparse data in both forward and inverse settings. The flexibility of GCNs is leveraged for irregular geometries with unstructured meshes. The effectiveness and merit of the proposed method are demonstrated over a variety of forward and inverse computational mechanics problems governed by both linear and nonlinear PDEs.
Partial differential equations are central to describing many physical phenomena. In many applications these phenomena are observed through a sensor network, with the aim of inferring their underlying properties. Leveraging from certain results in sa mpling and approximation theory, we present a new framework for solving a class of inverse source problems for physical fields governed by linear partial differential equations. Specifically, we demonstrate that the unknown field sources can be recovered from a sequence of, so called, generalised measurements by using multidimensional frequency estimation techniques. Next we show that---for physics-driven fields---this sequence of generalised measurements can be estimated by computing a linear weighted-sum of the sensor measurements; whereby the exact weights (of the sums) correspond to those that reproduce multidimensional exponentials, when used to linearly combine translates of a particular prototype function related to the Greens function of our underlying field. Explicit formulae are then derived for the sequence of weights, that map sensor samples to the exact sequence of generalised measurements when the Greens function satisfies the generalised Strang-Fix condition. Otherwise, the same mapping yields a close approximation of the generalised measurements. Based on this new framework we develop practical, noise robust, sensor network strategies for solving the inverse source problem, and then present numerical simulation results to verify their performance.
The sensitivity of heterogeneous energetic (HE) materials (propellants, explosives, and pyrotechnics) is critically dependent on their microstructure. Initiation of chemical reactions occurs at hot spots due to energy localization at sites of porosit ies and other defects. Emerging multi-scale predictive models of HE response to loads account for the physics at the meso-scale, i.e. at the scale of statistically representative clusters of particles and other features in the microstructure. Meso-scale physics is infused in machine-learned closure models informed by resolved meso-scale simulations. Since microstructures are stochastic, ensembles of meso-scale simulations are required to quantify hot spot ignition and growth and to develop models for microstructure-dependent energy deposition rates. We propose utilizing generative adversarial networks (GAN) to spawn ensembles of synthetic heterogeneous energetic material microstructures. The method generates qualitatively and quantitatively realistic microstructures by learning from images of HE microstructures. We show that the proposed GAN method also permits the generation of new morphologies, where the porosity distribution can be controlled and spatially manipulated. Such control paves the way for the design of novel microstructures to engineer HE materials for targeted performance in a materials-by-design framework.
121 - Xiao Xu , John T. Foster 2020
The influence function in peridynamic material models has a large effect on the dynamic behavior of elastic waves and in turn can greatly effect dynamic simulations of fracture propagation and material failure. Typically, the influence functions that are used in peridynamic models are selected for their numerical properties without regard to physical considerations. In this work, we present a method of deriving the peridynamic influence function for a one-dimensional initial/boundary value problem in a material with periodic microstructure. Starting with the linear local elastodynamic equation of motion in the microscale, we first use polynomial anzatzes to approximate microstructural displacements and then derive the homogenized nonlocal dynamic equation of motion for the macroscopic displacements; which, is easily reformulated as linear peridyamic equation with a discrete influence function. The shape and localization of the discrete influence function is completely determined by microstructural mechanical properties and length scales. By comparison with a highly resolved microstructural finite element model and the standard linear peridynamic model with a linearly decaying influence function, we demonstrate that the influence function derived from microstructural considerations is more accurate in predicting time dependent displacements and wave dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا