ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictions of the L$_{rm[CII]}$-SFR and [C$_{rm II}$] Luminosity Function at the Epoch of Reionization

102   0   0.0 ( 0 )
 نشر من قبل T. K. Daisy Leung
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. K. Daisy Leung




اسأل ChatGPT حول البحث

We present the first predictions for the $L_{rm [CII]}$ - SFR relation and [CII] luminosity function (LF) in the Epoch of Reionization (EoR) based on cosmological hydrodynamics simulations using the SIMBA suite plus radiative transfer calculations via SIGAME. The sample consists of 11,137 galaxies covering halo mass $log M_{rm halo}in$[9, 12.4] $M_odot$, star formation rate SFR$in$[0.01, 330] $M_odot$ yr$^{-1}$, and metallicity $<Z_{rm gas}>_{rm SFR}in$[0.1, 0.9] $Z_odot$. The simulated $L_{rm [CII]}$-SFR relation is consistent with the range observed, but with a spread of $simeq$0.3 dex at the high end of SFR ($>$100 $M_odot$ yr$^{-1}$) and $simeq$0.6 dex at the lower end, and there is tension between our predictions and the values of $L_{rm [CII]}$ above 10$^{8.5}$ $L_odot$ observed in some galaxies reported in the literature. The scatter in the $L_{rm [CII]}$-SFR relation is mostly driven by galaxy properties, such that at a given SFR, galaxies with higher molecular gas mass and metallicity have higher $L_{rm [CII]}$. The [CII] LF predicted by SIMBA is consistent with the upper limits placed by the only existing untargeted flux-limited [CII] survey at the EoR (ASPECS) and those predicted by semi-analytic models. We compare our results with existing models and discuss differences responsible for the discrepant slopes in the $L_{rm [CII]}$-SFR relatiion.



قيم البحث

اقرأ أيضاً

ALMA observations of $z>6$ galaxies have revealed abnormally high [OIII]$_{rm 88mu m}$/[CII]$_{rm 158mu m}$ ratios and [CII] deficits compared to local galaxies. The origin of this behaviour is unknown. Numerous solutions have been proposed including differences in C and O abundance ratios, observational bias, and differences in ISM properties, including ionisation parameter, gas density, or PDR covering fraction. In order to elucidate the underlying physics that drives this high-redshift phenomenon, we employ SPHINX$^{20}$, a state-of-the-art, cosmological radiation-hydrodynamics simulation, that resolves detailed ISM properties of thousands of galaxies in the epoch of reionization. We find that the observed $z>6$ [OIII]-SFR and [CII]-SFR relations can only be reproduced when the C/O abundance ratio is $sim8times$ lower than Solar and the total metal production is $sim5.7times$ higher than that of a Kroupa IMF. This implies that high-redshift galaxies are potentially primarily enriched by low-metallicity core-collapse supernovae with a more top-heavy IMF. As AGB stars and type-Ia supernova begin to contribute to the galaxy metallicity, both the [CII]-SFR and [CII] luminosity functions are predicted to converge to observed values at $zsim4.5$. While we demonstrate that ionisation parameter, LyC escape fraction, and CMB attenuation all drive galaxies towards higher [OIII]/[CII], observed values at $z>6$ can only be reproduced with substantially lower C/O abundances compared to Solar. The combination of [CII] and [OIII] can be used to predict the values of ionisation parameter, ISM gas density, and LyC escape fraction. We provide estimates of these quantities for nine observed $z>6$ galaxies. Finally, we demonstrate that [OI]$_{rm 63mu m}$ can be used as a replacement for [CII] when [CII] is unobserved and argue that more observation time should be used to target [OI] at $z>6$.
We present a model for the evolution of the galaxy ultraviolet (UV) luminosity function (LF) across cosmic time where star formation is linked to the assembly of dark matter halos under the assumption of a mass dependent, but redshift independent, ef ficiency. We introduce a new self-consistent treatment of the halo star formation history, which allows us to make predictions at $z>10$ (lookback time $lesssim500$ Myr), when growth is rapid. With a calibration at a single redshift to set the stellar-to-halo mass ratio, and no further degrees of freedom, our model captures the evolution of the UV LF over all available observations ($0lesssim zlesssim10$). The significant drop in luminosity density of currently detectable galaxies beyond $zsim8$ is explained by a shift of star formation toward less massive, fainter galaxies. Assuming that star formation proceeds down to atomic cooling halos, we derive a reionization optical depth $tau = 0.056^{+0.007}_{-0.010}$, fully consistent with the latest Planck measurement, implying that the universe is fully reionized at $z=7.84^{+0.65}_{-0.98}$. In addition, our model naturally produces smoothly rising star formation histories for galaxies with $Llesssim L_*$ in agreement with observations and hydrodynamical simulations. Before the epoch of reionization at $z>10$ we predict the LF to remain well-described by a Schechter function, but with an increasingly steep faint-end slope ($alphasim-3.5$ at $zsim16$). Finally, we construct forecasts for surveys with JWST~and WFIRST and predict that galaxies out to $zsim14$ will be observed. Galaxies at $z>15$ will likely be accessible to JWST and WFIRST only through the assistance of strong lensing magnification.
We present the first [CII] 158 $mu$m luminosity function (LF) at $zsim 5$ from a sample of serendipitous lines detected in the ALMA Large Program to INvestigate [CII] at Early times (ALPINE). A search performed over the 118 ALPINE pointings revealed several serendipitous lines. Based on their fidelity, we selected 14 lines for the final catalog. According to the redshift of their counterparts, we identified 8 out of 14 detections as [CII] lines at $zsim 5$, and two as CO transitions at lower redshifts. The remaining 4 lines have an elusive identification in the available catalogs and we considered them as [CII] candidates. We used the 8 confirmed [CII] and the 4 [CII] candidates to build one of the first [CII] LFs at $zsim 5$. We found that 11 out of these 12 sources have a redshift very similar to that of the ALPINE target in the same pointing, suggesting the presence of overdensities around the targets. Therefore, we split the sample in two (a clustered and field sub-sample) according to their redshift separation and built two separate LFs. Our estimates suggest that there could be an evolution of the [CII] LF between $z sim 5$ and $z sim 0$. By converting the [CII] luminosity to star formation rate we evaluated the cosmic star formation rate density (SFRD) at $zsim 5$. The clustered sample results in a SFRD $sim 10$ times higher than previous measurements from UV-selected galaxies. On the other hand, from the field sample (likely representing the average galaxy population) we derived a SFRD $sim 1.6$ higher compared to current estimates from UV surveys but compatible within the errors. Because of the large uncertainties, observations of larger samples are necessary to better constrain the SFRD at $zsim 5$. This study represents one of the first efforts aimed at characterizing the demography of [CII] emitters at $zsim 5$ using a mm-selection of galaxies.
Upcoming missions such as Euclid and the Nancy Grace Roman Space Telescope (Roman) will use emission-line selected galaxies to address a variety of questions in cosmology and galaxy evolution in the $z>1$ universe. The optimal observing strategy for these programs relies upon knowing the number of galaxies that will be found and the bias of the galaxy population. Here we measure the $rm{[O III]} lambda 5007$ luminosity function for a vetted sample of 1951 $m_{rm J+JH+H} < 26$ galaxies with unambiguous redshifts between $1.90 < z < 2.35$, which were selected using HST/WFC3 G141 grism frames made available by the 3D-HST program. These systems are directly analogous to the galaxies that will be identified by the Euclid and Roman missions, which will utilize grism spectroscopy to find $rm{[O III]} lambda 5007$-emitting galaxies at $0.8 lesssim z lesssim 2.7$ and $1.7 lesssim z lesssim 2.8$, respectively. We interpret our results in the context of the expected number counts for these upcoming missions. Finally, we combine our dust-corrected $rm{[O III]}$ luminosities with rest-frame ultraviolet star formation rates to present the first estimate of the SFR density associated with $1.90 < z < 2.35$ $rm{[O III]}$-emitting galaxies. We find that these grism-selected galaxies contain roughly half of the total star formation activity at $zsim2$.
Using the inclusive photon spectrum based on a data sample collected at the $J/psi$ peak with the KEDR detector at the VEPP-4M $e^+e^-$ collider, we measured the rate of the radiative decay $J/psitogammaeta_{rm c}$ as well as $eta_{rm c}$ mass and wi dth. Taking into account an asymmetric photon lineshape we obtained $Gamma^0_{gammaeta_{rm c}}=2.98pm0.18 phantom{|}^{+0.15}_{-0.33}$ keV, $M_{eta_{rm c}} = 2983.5 pm 1.4 phantom{|}^{+1.6}_{-3.6}$ MeV/$c^2$, $Gamma_{eta_{rm c}} = 27.2 pm 3.1 phantom{|}^{+5.4}_{-2.6}$ MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا