ﻻ يوجد ملخص باللغة العربية
In DAFNE, the Frascati $e^+e^-$ collider operating since 1998, an innovative collision scheme, the crab waist, has been successfully implemented during the years 2008-09. During operations for the Siddharta experiment an unusual synchrotron oscillation damping effect induced by beam-beam collisions has been observed. Indeed, when the longitudinal feedback is off, the positron beam becomes unstable with currents above 200-300 mA due to coupled bunch instability. The longitudinal instability is damped by colliding the positron beam with a high current electron beam (of the order of 2 A). A shift of about -600 Hz in the residual synchrotron sidebands is observed. Precise measurements have been performed by using both a commercial spectrum analyzer and the diagnostic capabilities of the longitudinal bunch-by-bunch feedback. The damping effect has been observed in DAFNE for the first time during collisions with the crab waist scheme. Our explanation, based both on theoretical consideration and modeling simulation, is that beam collisions with a large crossing angle produce longitudinal tune shift and spread, providing Landau damping of synchrotron oscillations.
Current bearing wire compensators were successfully used in the 2005-2006 run of the DA{Phi}NE collider to mitigate the detrimental effects of parasitic beam-beam interactions. A marked improvement of the positron beam lifetime was observed in machin
Recently the peak luminosity achieved on the DA{Phi}NE collider has been improved by almost a factor three by implementing a novel collision scheme based on large Piwinski angle and Crab-Waist. This encouraging result opened new perspectives for phys
Crab crossing scheme is an essential collision scheme to achieve high luminosity for the future colliders with large crossing angles. However, when bunch length of one or both colliding beams is comparable with the wavelength of the crab cavity volta
At the Laboratori Nazionali di Frascati of the National Institute of Nuclear Physics (INFN) an infrared (IR) array detector with fast response time has been built and assembled in order to collect the IR image of e-/e+ sources of the DA{Phi}NE collid
We describe the method of measuring the integrated luminosity of the $e^+e^-$ collider DA$Phi$NE, the Frascati $phi-$factory. The measurement is done with the KLOE detector selecting large angle Bhabha scattering events and normalizing them to the ef