ﻻ يوجد ملخص باللغة العربية
Robins 1997 introduced marginal structural models (MSMs), a general class of counterfactual models for the joint effects of time-varying treatment regimes in complex longitudinal studies subject to time-varying confounding. In his work, identification of MSM parameters is established under a sequential randomization assumption (SRA), which rules out unmeasured confounding of treatment assignment over time. We consider sufficient conditions for identification of the parameters of a subclass, Marginal Structural Mean Models (MSMMs), when sequential randomization fails to hold due to unmeasured confounding, using instead a time-varying instrumental variable. Our identification conditions require that no unobserved confounder predicts compliance type for the time-varying treatment. We describe a simple weighted estimator and examine its finite-sample properties in a simulation study. We apply the proposed estimator to examine the effect of delivery hospital on neonatal survival probability.
Estimating dynamic treatment regimes (DTRs) from retrospective observational data is challenging as some degree of unmeasured confounding is often expected. In this work, we develop a framework of estimating properly defined optimal DTRs with a time-
Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifia
The primary analysis of randomized screening trials for cancer typically adheres to the intention-to-screen principle, measuring cancer-specific mortality reductions between screening and control arms. These mortality reductions result from a combina
We consider the estimation of the average treatment effect in the treated as a function of baseline covariates, where there is a valid (conditional) instrument. We describe two doubly robust (DR) estimators: a locally efficient g-estimator, and a t
There is a fast-growing literature on estimating optimal treatment regimes based on randomized trials or observational studies under a key identifying condition of no unmeasured confounding. Because confounding by unmeasured factors cannot generally