ﻻ يوجد ملخص باللغة العربية
We carry out a comparison study on the bar structure in the Illustris-1 and TNG100 simulations. At $z=0$, 8.9% of 1232 disc galaxies with stellar mass $>10^{10.5}M_{odot}$ in Illustris-1 are barred, while the numbers are 55% of 1269 in TNG100. The bar fraction as a function of stellar mass in TNG100 agrees well with the survey $S^4G$. The median redshift of bar formation are $sim 0.4-0.5$ and $sim 0.25$ in TNG100 and Illustris-1 respectively. Bar fraction generally increases with stellar mass and decreases with gas fraction in both simulations. Barred galaxy had higher gas fraction at high redshift tend to form bar later. When the bars were formed, the disc gas fractions were mostly lower than 0.4. The much higher bar fraction in TNG100 probably have benefit from much lower gas fraction in massive disc galaxies since $zsim3$, which may result from the combination of more effective stellar and AGN feedback. The latter may be the primary factor at $z<2$. Meanwhile, in both simulations, barred galaxies have higher star formation rate before bar formation, and stronger AGN feedback all the time than unbarred galaxies. The properties of dark matter halos hosting massive disc galaxies are similar between two simulations, and should have minor effect on the different bar frequency. For individual galaxies under similar halo environment cross two simulations, different baryonic physics can lead to striking discrepancy on morphology. The morphology of individual galaxies is subject to combined effects of environment and internal baryonic physics, and is often not predictable.
We study black hole - host galaxy correlations, and the relation between the over-massiveness (the distance from the average $M_{BH}-sigma$ relation) of super-massive black holes (SMBHs) and star formation histories of their host galaxies in the Illu
Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations
In this work we analyse the structural and photometric properties of 21 barred simulated galaxies from the Auriga Project. These consist of Milky Way-mass magneto-hydrodynamical simulations in a $Lambda$CDM cosmological context. In order to compare w
Tens of early type galaxies have been recently reported to possess prolate rotation, i.e. significant amount of rotation around the major axis, including two cases in the Local Group. Although expected theoretically, this phenomenon is rarely observe
(Abridged) Any viable cosmological model in which galaxies interact predicts the existence of primordial and tidal dwarf galaxies (TDGs). In particular, in the standard model of cosmology ($Lambda$CDM), according to the dual dwarf galaxy theorem, the