ﻻ يوجد ملخص باللغة العربية
Understanding collective mobility patterns is crucial to plan the restart of production and economic activities, which are currently put in stand-by to fight the diffusion of the epidemics. In this report, we use mobile phone data to infer the movements of people between Italian provinces and municipalities, and we analyze the incoming, outcoming and internal mobility flows before and during the national lockdown (March 9th, 2020) and after the closure of non-necessary productive and economic activities (March 23th, 2020). The population flow across provinces and municipalities enable for the modelling of a risk index tailored for the mobility of each municipality or province. Such an index would be a useful indicator to drive counter-measures in reaction to a sudden reactivation of the epidemics. Mobile phone data, even when aggregated to preserve the privacy of individuals, are a useful data source to track the evolution in time of human mobility, hence allowing for monitoring the effectiveness of control measures such as physical distancing. We address the following analytical questions: How does the mobility structure of a territory change? Do incoming and outcoming flows become more predictable during the lockdown, and what are the differences between weekdays and weekends? Can we detect proper local job markets based on human mobility flows, to eventually shape the borders of a local outbreak?
In 2020, countries affected by the COVID-19 pandemic implemented various non-pharmaceutical interventions to contrast the spread of the virus and its impact on their healthcare systems and economies. Using Italian data at different geographic scales,
Evaluating relative changes leads to additional insights which would remain hidden when only evaluating absolute changes. We analyze a dataset describing mobility of mobile phones in Austria before, during COVID-19 lock-down measures until recent. By
This paper describes how mobile phone data can guide government and public health authorities in determining the best course of action to control the COVID-19 pandemic and in assessing the effectiveness of control measures such as physical distancing
The ongoing Coronavirus Disease 2019 (COVID-19) pandemic threatens the health of humans and causes great economic losses. Predictive modelling and forecasting the epidemic trends are essential for developing countermeasures to mitigate this pandemic.
The policies implemented to hinder the COVID-19 outbreak represent one of the largest critical events in history. The understanding of this process is fundamental for crafting and tailoring post-disaster relief. In this work we perform a massive data