ترغب بنشر مسار تعليمي؟ اضغط هنا

Multithreaded event-chain Monte Carlo with local times

177   0   0.0 ( 0 )
 نشر من قبل Werner Krauth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multithreaded event-chain Monte Carlo algorithm (ECMC) for hard spheres. Threads synchronize at infrequent breakpoints and otherwise scan for local horizon violations. Using a mapping onto absorbing Markov chains, we rigorously prove the correctness of a sequential-consistency implementation for small test suites. On x86 and ARM processors, a C++ (OpenMP) implementation that uses compare-and-swap primitives for data access achieves considerable speed-up with respect to single-threaded code. The generalized birthday problem suggests that for the number of threads scaling as the square root of the number of spheres, the horizon-violation probability remains small for a fixed simulation time. We provide C++ and Python open-source code that reproduces all our results.



قيم البحث

اقرأ أيضاً

We present JeLLyFysh-Version1.0, an open-source Python application for event-chain Monte Carlo (ECMC), an event-driven irreversible Markov-chain Monte Carlo algorithm for classical N-body simulations in statistical mechanics, biophysics and electroch emistry. The applications architecture closely mirrors the mathematical formulation of ECMC. Local potentials, long-ranged Coulomb interactions and multi-body bending potentials are covered, as well as bounding potentials and cell systems including the cell-veto algorithm. Configuration files illustrate a number of specific implementations for interacting atoms, dipoles, and water molecules.
We propose a minimal generalization of the celebrated Markov-Chain Monte Carlo algorithm which allows for an arbitrary number of configurations to be visited at every Monte Carlo step. This is advantageous when a parallel computing machine is availab le, or when many biased configurations can be evaluated at little additional computational cost. As an example of the former case, we report a significant reduction of the thermalization time for the paradigmatic Sherrington-Kirkpatrick spin-glass model. For the latter case, we show that, by leveraging on the exponential number of biased configurations automatically computed by Diagrammatic Monte Carlo, we can speed up computations in the Fermi-Hubbard model by two orders of magnitude.
We study the dynamics of one-dimensional (1D) interacting particles simulated with the event-chain Monte Carlo algorithm (ECMC). We argue that previou
We generalize the rejection-free event-chain Monte Carlo algorithm from many particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: (i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; (ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; (iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.
In this article, we present an event-driven algorithm that generalizes the recent hard-sphere event-chain Monte Carlo method without introducing discretizations in time or in space. A factorization of the Metropolis filter and the concept of infinite simal Monte Carlo moves are used to design a rejection-free Markov-chain Monte Carlo algorithm for particle systems with arbitrary pairwise interactions. The algorithm breaks detailed balance, but satisfies maximal global balance and performs better than the classic, local Metropolis algorithm in large systems. The new algorithm generates a continuum of samples of the stationary probability density. This allows us to compute the pressure and stress tensor as a byproduct of the simulation without any additional computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا