ﻻ يوجد ملخص باللغة العربية
Rapid antimicrobial susceptibility testing (AST) is urgently needed for treating infections with correct antibiotics and slowing down the emergence of antibiotic-resistant bacteria. Here, we report a phenotypic platform that rapidly produces AST results by femtosecond stimulated Raman scattering imaging of deuterium oxide (D2O) metabolism. Metabolic incorporation of D2O into biomass in a single bacterium is probed in as short as 10 minutes after culture in 70% D2O medium, the fastest among current technologies. Single-cell metabolism inactivation concentration (SC-MIC) is obtained in less than 2.5 hours from colony to results. The SC-MIC results of 37 sets of samples, which include 8 major bacterial species and 14 different antibiotics often encountered in clinic, are validated by standard minimal inhibitory concentration blindly measured via broth microdilution. Towards clinical translation, SRS imaging of D2O metabolic incorporation and SC-MIC determination after 1-h antibiotics treatment and 30-minutes mixture of D2O and antibiotics incubation of bacteria in urine or whole blood is demonstrated.
Stimulated low-frequency Raman scattering can give essential information about the elastic properties of different nanoparticles systems, in particular, biological nanostructures. In the present study, low-frequency vibrational modes in human and bov
Stimulated Raman scattering (SRS) in plasma in a non-eigenmode regime is studied theoretically and numerically. Different from normal SRS with the eigen electrostatic mode excited, the non-eigenmode SRS is developed at plasma density $n_e>0.25n_c$ wh
Cellular metabolism, the integrated interconversion of thousands of metabolic substrates through enzyme-catalyzed biochemical reactions, is the most investigated complex intercellular web of molecular interactions. While the topological organization
The global optimum for valence population transfer in the NO$_2$ molecule driven by impulsive x-ray stimulated Raman scattering of one-femtosecond x-ray pulses tuned below the Oxygen K-edge is determined with the Multiconfiguration Time-Dependent Har
Single particle diffraction imaging experiments at free-electron lasers (FEL) have a great potential for structure determination of reproducible biological specimens that can not be crystallized. One of the challenges in processing the data from such