ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Role of Hash-based Signatures in Quantum-Safe Internet of Things: Current Solutions and Future Directions

113   0   0.0 ( 0 )
 نشر من قبل Sabah Suhail
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Internet of Things (IoT) is gaining ground as a pervasive presence around us by enabling miniaturized things with computation and communication capabilities to collect, process, analyze, and interpret information. Consequently, trustworthy data act as fuel for applications that rely on the data generated by these things, for critical decision-making processes, data debugging, risk assessment, forensic analysis, and performance tuning. Currently, secure and reliable data communication in IoT is based on public-key cryptosystems such as Elliptic Curve Cryptosystem (ECC). Nevertheless, reliance on the security of de-facto cryptographic primitives is at risk of being broken by the impending quantum computers. Therefore, the transition from classical primitives to quantum-safe primitives is indispensable to ensure the overall security of data en route. In this paper, we investigate applications of one of the post-quantum signatures called Hash-Based Signature (HBS) schemes for the security of IoT devices in the quantum era. We give a succinct overview of the evolution of HBS schemes with emphasis on their construction parameters and associated strengths and weaknesses. Then, we outline the striking features of HBS schemes and their significance for the IoT security in the quantum era. We investigate the optimal selection of HBS in the IoT networks with respect to their performance-constrained requirements, resource-constrained nature, and design optimization objectives. In addition to ongoing standardization efforts, we also highlight current and future research and deployment challenges along with possible solutions. Finally, we outline the essential measures and recommendations that must be adopted by the IoT ecosystem while preparing for the quantum world.



قيم البحث

اقرأ أيضاً

Blockchain is gaining momentum as a promising technology for many application domains, one of them being the Edge-of- Things (EoT) that is enabled by the integration of edge computing and the Internet-of-Things (IoT). Particularly, the amalgamation o f blockchain and EoT leads to a new paradigm, called blockchain enabled EoT (BEoT) that is crucial for enabling future low-latency and high-security services and applications. This article envisions a novel BEoT architecture for supporting industrial applications under the management of blockchain at the network edge in a wide range of IoT use cases such as smart home, smart healthcare, smart grid, and smart transportation. The potentials of BEoT in providing security services are also explored, including access authentication, data privacy preservation, attack detection, and trust management. Finally, we point out some key research challenges and future directions in this emerging area.
This paper analyses the various authentication systems implemented for enhanced security and private re-position of an individuals log-in credentials. The first part of the paper describes the multi-factor authentication (MFA) systems, which, though not applicable to the field of Internet of Things, provides great security to a users credentials. MFA is followed by a brief description of the working mechanism of interaction of third party clients with private resources over the OAuth protocol framework and a study of the delegation based authentication system in IP-based IoT.
The interconnection of resource-constrained and globally accessible things with untrusted and unreliable Internet make them vulnerable to attacks including data forging, false data injection, and packet drop that affects applications with critical de cision-making processes. For data trustworthiness, reliance on provenance is considered to be an effective mechanism that tracks both data acquisition and data transmission. However, provenance management for sensor networks introduces several challenges, such as low energy, bandwidth consumption, and efficient storage. This paper attempts to identify packet drop (either maliciously or due to network disruptions) and detect faulty or misbehaving nodes in the Routing Protocol for Low-Power and Lossy Networks (RPL) by following a bi-fold provenance-enabled packed path tracing (PPPT) approach. Firstly, a system-level ordered-provenance information encapsulates the data generating nodes and the forwarding nodes in the data packet. Secondly, to closely monitor the dropped packets, a node-level provenance in the form of the packet sequence number is enclosed as a routing entry in the routing table of each participating node. Lossless in nature, both approaches conserve the provenance size satisfying processing and storage requirements of IoT devices. Finally, we evaluate the efficacy of the proposed scheme with respect to provenance size, provenance generation time, and energy consumption.
155 - Udit Gupta 2015
Ever since the advent of computing, managing data has been of extreme importance. With innumerable devices getting added to network infrastructure, there has been a proportionate increase in the data which needs to be stored. With the advent of Inter net of Things (IOT) it is anticipated that billions of devices will be a part of the internet in another decade. Since those devices will be communicating with each other on a regular basis with little or no human intervention, plethora of real time data will be generated in quick time which will result in large number of log files. Apart from complexity pertaining to storage, it will be mandatory to maintain confidentiality and integrity of these logs in IOT enabled devices. This paper will provide a brief overview about how logs can be efficiently and securely stored in IOT devices.
75 - Lorenzo Ghiro 2021
The use of the term blockchain is documented for disparate projects, from cryptocurrencies to applications for the Internet of Things (IoT), and many more. The concept of blockchain appears therefore blurred, as it is hard to believe that the same te chnology can empower applications that have extremely different requirements and exhibit dissimilar performance and security. This position paper elaborates on the theory of distributed systems to advance a clear definition of blockchain that allows us to clarify its role in the IoT. This definition inextricably binds together three elements that, as a whole, provide the blockchain with those unique features that distinguish it from other distributed ledger technologies: immutability, transparency and anonimity. We note however that immutability comes at the expense of remarkable resource consumption, transparency demands no confidentiality and anonymity prevents user identification and registration. This is in stark contrast to the requirements of most IoT applications that are made up of resource constrained devices, whose data need to be kept confidential and users to be clearly known. Building on the proposed definition, we derive new guidelines for selecting the proper distributed ledger technology depending on application requirements and trust models, identifying common pitfalls leading to improper applications of the blockchain. We finally indicate a feasible role of the blockchain for the IoT: myriads of local, IoT transactions can be aggregated off-chain and then be successfully recorded on an external blockchain as a means of public accountability when required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا