ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling strong control measures for epidemic propagation with networks -- A COVID-19 case study

109   0   0.0 ( 0 )
 نشر من قبل Michael Small
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that precise knowledge of epidemic transmission parameters is not required to build an informative model of the spread of disease. We propose a detailed model of the topology of the contact network under various external control regimes and demonstrate that this is sufficient to capture the salient dynamical characteristics and to inform decisions. Contact between individuals in the community is characterised by a contact graph, the structure of that contact graph is selected to mimic community control measures. Our model of city-level transmission of an infectious agent (SEIR model) characterises spread via a (a) scale-free contact network (no control); (b) a random graph (elimination of mass gatherings); and (c) small world lattice (partial to full lockdown -- social distancing). This model exhibits good qualitative agreement between simulation and data from the 2020 pandemic spread of coronavirus. Estimates of the relevant rate parameters of the SEIR model are obtained and we demonstrate the robustness of our model predictions under uncertainty of those estimates. The social context and utility of this work is identified, contributing to a highly effective pandemic response in Western Australia.



قيم البحث

اقرأ أيضاً

79 - Reza Sameni 2020
In this research, we study the propagation patterns of epidemic diseases such as the COVID-19 coronavirus, from a mathematical modeling perspective. The study is based on an extensions of the well-known susceptible-infected-recovered (SIR) family of compartmental models. It is shown how social measures such as distancing, regional lockdowns, quarantine and global public health vigilance, influence the model parameters, which can eventually change the mortality rates and active contaminated cases over time, in the real world. As with all mathematical models, the predictive ability of the model is limited by the accuracy of the available data and to the so-called textit{level of abstraction} used for modeling the problem. In order to provide the broader audience of researchers a better understanding of spreading patterns of epidemic diseases, a short introduction on biological systems modeling is also presented and the Matlab source codes for the simulations are provided online.
76 - Luca DellAnna 2020
We study a simple realistic model for describing the diffusion of an infectious disease on a population of individuals. The dynamics is governed by a single functional delay differential equation, which, in the case of a large population, can be solv ed exactly, even in the presence of a time-dependent infection rate. This delay model has a higher degree of accuracy than that of the so-called SIR model, commonly used in epidemiology, which, instead, is formulated in terms of ordinary differential equations. We apply this model to describe the outbreak of the new infectious disease, Covid-19, in Italy, taking into account the containment measures implemented by the government in order to mitigate the spreading of the virus and the social costs for the population.
In late December 2019, a novel strand of Coronavirus (SARS-CoV-2) causing a severe, potentially fatal respiratory syndrome (COVID-19) was identified in Wuhan, Hubei Province, China and is causing outbreaks in multiple world countries, soon becoming a pandemic. Italy has now become the most hit country outside of Asia: on March 16, 2020, the Italian Civil Protection documented a total of 27980 confirmed cases and 2158 deaths of people tested positive for SARS-CoV-2. In the context of an emerging infectious disease outbreak, it is of paramount importance to predict the trend of the epidemic in order to plan an effective control strategy and to determine its impact. This paper proposes a new epidemic model that discriminates between infected individuals depending on whether they have been diagnosed and on the severity of their symptoms. The distinction between diagnosed and non-diagnosed is important because non-diagnosed individuals are more likely to spread the infection than diagnosed ones, since the latter are typically isolated, and can explain misperceptions of the case fatality rate and of the seriousness of the epidemic phenomenon. Being able to predict the amount of patients that will develop life-threatening symptoms is important since the disease frequently requires hospitalisation (and even Intensive Care Unit admission) and challenges the healthcare system capacity. We show how the basic reproduction number can be redefined in the new framework, thus capturing the potential for epidemic containment. Simulation results are compared with real data on the COVID-19 epidemic in Italy, to show the validity of the model and compare different possible predicted scenarios depending on the adopted countermeasures.
The nation-wide lockdown starting 25 March 2020, aimed at suppressing the spread of the COVID-19 disease, was extended until 31 May 2020 in three subsequent orders by the Government of India. The extended lockdown has had significant social and econo mic consequences and `lockdown fatigue has likely set in. Phased reopening began from 01 June 2020 onwards. Mumbai, one of the most crowded cities in the world, has witnessed both the largest number of cases and deaths among all the cities in India (41986 positive cases and 1368 deaths as of 02 June 2020). Many tough decisions are going to be made on re-opening in the next few days. In an earlier IISc-TIFR Report, we presented an agent-based city-scale simulator(ABCS) to model the progression and spread of the infection in large metropolises like Mumbai and Bengaluru. As discussed in IISc-TIFR Report 1, ABCS is a useful tool to model interactions of city residents at an individual level and to capture the impact of non-pharmaceutical interventions on the infection spread. In this report we focus on Mumbai. Using our simulator, we consider some plausible scenarios for phased emergence of Mumbai from the lockdown, 01 June 2020 onwards. These include phased and gradual opening of the industry, partial opening of public transportation (modelling of infection spread in suburban trains), impact of containment zones on controlling infections, and the role of compliance with respect to various intervention measures including use of masks, case isolation, home quarantine, etc. The main takeaway of our simulation results is that a phased opening of workplaces, say at a conservative attendance level of 20 to 33%, is a good way to restart economic activity while ensuring that the citys medical care capacity remains adequate to handle the possible rise in the number of COVID-19 patients in June and July.
There is a continuing debate on relative benefits of various mitigation and suppression strategies aimed to control the spread of COVID-19. Here we report the results of agent-based modelling using a fine-grained computational simulation of the ongoi ng COVID-19 pandemic in Australia. This model is calibrated to match key characteristics of COVID-19 transmission. An important calibration outcome is the age-dependent fraction of symptomatic cases, with this fraction for children found to be one-fifth of such fraction for adults. We apply the model to compare several intervention strategies, including restrictions on international air travel, case isolation, home quarantine, social distancing with varying levels of compliance, and school closures. School closures are not found to bring decisive benefits, unless coupled with high level of social distancing compliance. We report several trade-offs, and an important transition across the levels of social distancing compliance, in the range between 70% and 80% levels, with compliance at the 90% level found to control the disease within 13--14 weeks, when coupled with effective case isolation and international travel restrictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا