ترغب بنشر مسار تعليمي؟ اضغط هنا

A Model-Insensitive Baryon Acoustic Oscillation Feature in the 21 cm Signal from Reionization

108   0   0.0 ( 0 )
 نشر من قبل Christopher Cain
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the impact of baryon-dark matter relative velocities on intergalactic small-scale structure and the 21 cm signal during reionization. Streaming velocities reduced clumping in the intergalactic medium (IGM) on mass scales of $sim 10^4 - 10^8$ M$_{odot}$. This effect produced a distinct baryon acoustic oscillation (BAO) feature in the 21 cm power spectrum at wave numbers $ksim 0.1$ h/Mpc, near which forthcoming surveys will be most sensitive. In contrast to the highly uncertain impact of streaming velocities on star formation, the effect on clumping is better constrained because it is set mainly by cosmology and straightforward gas dynamics. We quantify the latter using coupled radiation-hydrodynamic simulations that capture the Jeans scale of pre-reionization gas. The clumping factor of ionized gas is reduced by 5-10% in regions with RMS streaming velocities. The suppression peaks $approx 5$ Myr after a region is reionized, but disappears within 200 Myr due to pressure smoothing. We model the corresponding impact on the 21 cm signal and find that the BAO feature is most likely to appear at $approx$ 10 % ionization. During this phase, the feature may appear at the 1 % (5 %) level at $k sim 0.1 (0.06)$ h/Mpc with an amplitude that varies by a factor of $< 10$ across a range of reionization histories. We also provide a model for the signal originating from streaming velocitys impact on ionizing sources, which can vary by 4 orders of magnitude depending on highly uncertain source properties. We find that the clumping signal probably dominates the source one unless Population III star formation in $10^6 - 10^8$ M$_{odot}$ halos contributed significantly to the first 10% of reionization.

قيم البحث

اقرأ أيضاً

The relative velocity between baryons and dark matter in the early Universe can suppress the formation of small-scale baryonic structure and leave an imprint on the baryon acoustic oscillation (BAO) scale at low redshifts after reionization. This str eaming velocity affects the post-reionization gas distribution by directly reducing the abundance of pre-existing mini-halos ($lesssim 10^7 M_{bigodot}$) that could be destroyed by reionization and indirectly modulating reionization history via photoionization within these mini-halos. In this work, we investigate the effect of streaming velocity on the BAO feature in HI 21 cm intensity mapping after reionization, with a focus on redshifts $3.5lesssim zlesssim5.5$. We build a spatially modulated halo model that includes the dependence of the filtering mass on the local reionization redshift and thermal history of the intergalactic gas. In our fiducial model, we find isotropic streaming velocity bias coefficients $b_v$ ranging from $-0.0033$ at $z=3.5$ to $-0.0248$ at $z=5.5$, which indicates that the BAO scale is stretched (i.e., the peaks shift to lower $k$). In particular, streaming velocity shifts the transverse BAO scale between 0.087% ($z=3.5$) and 0.37% ($z=5.5$) and shifts the radial BAO scale between 0.13% ($z=3.5$) and 0.52% ($z=5.5$). These shifts exceed the projected error bars from the more ambitious proposed hemispherical-scale surveys in HI (0.13% at $1sigma$ per $Delta z = 0.5$ bin).
The 21-cm signal of neutral hydrogen is a sensitive probe of the Epoch of Reionization (EoR) and Cosmic Dawn. Currently operating radio telescopes have ushered in a data-driven era of 21-cm cosmology, providing the first constraints on the astrophysi cal properties of sources that drive this signal. However, extracting astrophysical information from the data is highly non-trivial and requires the rapid generation of theoretical templates over a wide range of astrophysical parameters. To this end emulators are often employed, with previous efforts focused on predicting the power spectrum. In this work we introduce 21cmGEM - the first emulator of the global 21-cm signal from Cosmic Dawn and the EoR. The smoothness of the output signal is guaranteed by design. We train neural networks to predict the cosmological signal using a database of ~30,000 simulated signals which were created by varying seven astrophysical parameters: the star formation efficiency and the minimal mass of star-forming halos; the efficiency of the first X-ray sources and their spectrum parameterized by spectral index and the low energy cutoff; the mean free path of ionizing photons and the CMB optical depth. We test the performance with a set of ~2,000 simulated signals, showing that the relative error in the prediction has an r.m.s. of 0.0159. The algorithm is efficient, with a running time per parameter set of 0.16 sec. Finally, we use the database of models to check the robustness of relations between the features of the global signal and the astrophysical parameters that we previously reported.
Using a suite of detailed numerical simulations we estimate the level of anisotropy generated by the time evolution along the light cone of the 21cm signal from the epoch of reionization. Our simulations include the physics necessary to model the sig nal during both the late emission regime and the early absorption regime, namely X-ray and Lyman-band 3D radiative transfer in addition to the usual dynamics and ionizing UV transfer. The signal is analysed using correlation functions perpendicular and parallel to the line of sight (LOS). We reproduce general findings from previous theoretical studies: the overall amplitude of the correlations and the fact that the light cone anisotropy is visible only on large scales (100 cMpc). However, the detailed behaviour is different. At 3 different epochs, the amplitude of the correlations along and perpendicular to the LOS differ from each other, indicating anisotropy. These 3 epochs are associated with 3 events of the global reionization history: the overlap of ionized bubbles, the onset of mild heating by X-rays in regions around the sources, and the onset of efficient Lyman-alpha coupling in regions around the sources. A 20x20 deg^2 survey area may be necessary to mitigate sample variance when we use the directional correlation functions. On a 100 cMpc scale the light cone anisotropy dominates over the anisotropy generated by peculiar velocity gradients computed in the linear regime. By modelling instrumental noise and limited resolution, we find that the anisotropy should be easily detectable by the SKA, assuming perfect foreground removal, the limiting factor being a large enough survey size. In the case of the LOFAR, it is likely that only first anisotropy episode will fall in the observing frequency range and will be detectable only if sample variance is much reduced (i.e. a larger than 20x20 deg^2 survey, which is not presently planned).
70 - Anv{z}e Slosar 2016
The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative o f the monopole signal. We argue that although the signal is weaker by a factor of $sim100$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.
Studying the cosmic dawn and the epoch of reionization through the redshifted 21 cm line are among the major science goals of the SKA1. Their significance lies in the fact that they are closely related to the very first stars in the universe. Interpr eting the upcoming data would require detailed modelling of the relevant physical processes. In this article, we focus on the theoretical models of reionization that have been worked out by various groups working in India with the upcoming SKA in mind. These models include purely analytical and semi-numerical calculations as well as fully numerical radiative transfer simulations. The predictions of the 21 cm signal from these models would be useful in constraining the properties of the early galaxies using the SKA data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا