ﻻ يوجد ملخص باللغة العربية
We describe the practical implementation of an average polynomial-time algorithm for counting points on superelliptic curves defined over $mathbb Q$ that is substantially faster than previous approaches. Our algorithm takes as input a superelliptic curves $y^m=f(x)$ with $mge 2$ and $fin mathbb Z[x]$ any squarefree polynomial of degree $dge 3$, along with a positive integer $N$. It can compute $#X(mathbb F_p)$ for all $ple N$ not dividing $mmathrm{lc}(f)mathrm{disc}(f)$ in time $O(md^3 Nlog^3 Nloglog N)$. It achieves this by computing the trace of the Cartier--Manin matrix of reductions of $X$. We can also compute the Cartier--Manin matrix itself, which determines the $p$-rank of the Jacobian of $X$ and the numerator of its zeta function modulo~$p$.
Let $p$ be a prime, let $r$ and $q$ be powers of $p$, and let $a$ and $b$ be relatively prime integers not divisible by $p$. Let $C/mathbb F_{r}(t)$ be the superelliptic curve with affine equation $y^b+x^a=t^q-t$. Let $J$ be the Jacobian of $C$. By w
We present an efficient algorithm to compute the Hasse-Witt matrix of a hyperelliptic curve C/Q modulo all primes of good reduction up to a given bound N, based on the average polynomial-time algorithm recently introduced by Harvey. An implementation
We give an explicit description of the stable reduction of superelliptic curves of the form $y^n=f(x)$ at primes $p$ whose residue characteristic is prime to the exponent $n$. We then use this description to compute the local $L$-factor of the curve and the exponent of conductor at $p$.
In this paper we study the Coleman-Oort conjecture for superelliptic curves, i.e., curves defined by affine equations $y^n=F(x)$ with $F$ a separable polynomial. We prove that up to isomorphism there are at most finitely many superelliptic curves of
We present an algorithm that computes the Hasse-Witt matrix of given hyperelliptic curve over Q at all primes of good reduction up to a given bound N. It is simpler and faster than the previous algorithm developed by the authors.