ترغب بنشر مسار تعليمي؟ اضغط هنا

The spectral impact of magnetic activity on disk-integrated HARPS-N solar observations: exploring new activity indicators

72   0   0.0 ( 0 )
 نشر من قبل Christopher Allan Watson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar activity is the major roadblock on the path to finding true Earth-analogue planets with the Doppler technique. Thus, identifying new indicators that better trace magnetic activity (i.e. faculae and spots) is crucial to aid in disentangling these signals from that of a planets Doppler wobble. In this work, we investigate activity related features as seen in disk-integrated spectra from the HARPS-N solar telescope. We divide high-activity spectral echelle orders by low-activity master templates (as defined using both log RHK and images from the Solar Dynamics Observatory, SDO), creating relative spectra. With resolved images of the surface of the Sun (via SDO), the faculae and spot filling factors can be calculated, giving a measure of activity independent of, and in addition to, log RHK. We find pseudo-emission (and pseudo-absorption) features in the relative spectra that are similar to those reported in our previous work on alpha Cen B. In alpha Cen B, the features are shown to correlate better to changes in faculae filling factor than spot filling factor. In this work we more confidently identify changes in faculae coverage of the visible hemisphere of the Sun as the source of features produced in the relative spectra. Finally, we produce trailed spectra to observe the RV component of the features, which show that the features move in a redward direction as one would expect when tracking active regions rotating on the surface of a star.



قيم البحث

اقرأ أيضاً

The Sun provides the energy necessary to sustain our existence. While the Sun provides for us, it is also capable of taking away. The weather and climatic scales of solar evolution and the Sun-Earth connection are not well understood. There has been tremendous progress in the century since the discovery of solar magnetism - magnetism that ultimately drives the electromagnetic, particulate and eruptive forcing of our planetary system. There is contemporary evidence of a decrease in solar magnetism, perhaps even indicators of a significant downward trend, over recent decades. Are we entering a minimum in solar activity that is deeper and longer than a typical solar minimum, a grand minimum? How could we tell if we are? What is a grand minimum and how does the Sun recover? These are very pertinent questions for modern civilization. In this paper we present a hypothetical demonstration of entry and exit from grand minimum conditions based on a recent analysis of solar features over the past 20 years and their possible connection to the origins of the 11(-ish) year solar activity cycle.
108 - J. Gomes da Silva 2020
We present a catalogue of homogeneous determined chromospheric emission (CE), stellar atmospheric parameters and ages for 1,674 FGK main sequence (MS), subgiant, and giant stars. The analysis of CE level and variability is also performed. We measured CE in the CaII lines using more than 180,000 high-resolution spectra from the HARPS spectrograph, as compiled in the AMBRE project, obtained between 2003 and 2019. We converted the fluxes to bolometric and photospheric corrected chromospheric emission ratio, $R_text{HK}$. Stellar atmospheric parameters $T_text{eff}$, $log g$, and [Fe/H] were retrieved from the literature or determined using an homogeneous method. $M_star$, $R_star$, and ages were determined from isochrone fitting. We analysed the CE distribution for the different luminosity classes and spectral types and confirmed the existence of the very inactive stars (VIS) and very active stars (VAS) populations at $log R_text{HK}< -5.1$ and $> -4.2$ dex, respectively. We found indications that the VIS population is composed mainly of subgiant and giant stars and that $log R_text{HK}= -5.1$ dex marks a transition in stellar evolution. There appears to be at least three regimes of variability, for inactive, active and very active stars, with the inactive and active regimes separated by a diagonal Vaughan-Preston gap. We show that stars with low activity levels do not necessarily have low variability. In the case of K dwarfs which show high CE variability, inactive and active stars have similar levels of activity variability. This means that activity levels alone are not enough to infer about the activity variability of a star. We also explained the shape of the VP gap observed in the distribution of CE by using the CE variability-level diagram. In the CE variability-level diagram, the Sun is located in the high variability region of the inactive MS stars zone. (Abridged)
Over 2,000 stars were observed for one month with a high enough cadence in order to look for acoustic modes during the survey phase of the Kepler mission. Solar-like oscillations have been detected in about 540 stars. The question of why no oscillati ons were detected in the remaining stars is still open. Previous works explained the non-detection of modes with the high level of magnetic activity. However, the studied stars contained some classical pulsators and red giants that could have biased the results. In this work, we revisit this analysis on a cleaner sample of 1,014 main-sequence solar-like stars. First we compute the predicted amplitude of the modes. We find that the stars with detected modes have an amplitude to noise ratio larger than 0.94. We measure reliable rotation periods and the associated photometric magnetic index for 684 stars and in particular for 323 stars where the mode amplitude is predicted to be high enough to be detected. We find that among these 323 stars 32% have a magnetic activity level larger than the Sun at maximum activity, explaining the non-detection of p modes. Interestingly, magnetic activity cannot be the primary reason responsible for the absence of detectable modes in the remaining 68% of the stars without p modes detected and with reliable rotation periods. Thus, we investigate metallicity, inclination angle, and binarity as possible causes of low mode amplitudes. Using spectroscopic observations for a subsample, we find that a low metallicity could be the reason for suppressed modes. No clear correlation with binarity nor inclination is found. We also derive the lower limit for our photometric activity index (of 20-30 ppm) below which rotation and magnetic activity are not detected. Finally with our analysis we conclude that stars with a photometric activity index larger than 2,000 ppm have 98.3% probability of not having oscillations detected.
We present our latest results on the solar-stellar connection by studying 18 solar analogs that we identified among the Kepler seismic sample (Salabert et al., 2016a). We measured their magnetic activity properties using observations collected by the Kepler satellite and the ground-based, high-resolution Hermes spectrograph. The photospheric (Sph) and chromospheric (S) magnetic activity proxies of these seismic solar analogs are compared in relation to solar activity. We show that the activity of the Sun is actually comparable to the activity of the seismic solar analogs. Furthermore, we report on the discovery of temporal variability in the acoustic frequencies of the young (1 Gyr-old) solar analog KIC10644253 with a modulation of about 1.5 years, which agrees with the derived photospheric activity (Salabert et al., 2016b). It could actually be the signature of the short-period modulation, or quasi-biennal oscillation, of its magnetic activity as observed in the Sun and the 1-Gyr-old solar analog HD30495. In addition, the lithium abundance and the chromospheric activity estimated from Hermes confirms that KIC10644253 is a young and more active star than the Sun.
The solar telescope connected to HARPS-N has been observing the Sun since the summer of 2015. Such high-cadence, long-baseline data set is crucial for understanding spurious radial-velocity signals induced by our Sun and by the instrument. On the ins trumental side, this data set allowed us to detect sub-ms,systematics that needed to be corrected for. The goal of this manuscript is to i) present a new data reduction software for HARPS-N, ii) demonstrate the improvement brought by this new software on the first three years of the HARPS-N solar data set, and iii) release all the obtained solar products, from extracted spectra to precise radial velocities. To correct for the instrumental systematics observed in the data reduced with the current version of the HARPS-N data reduction software (DRS version 3.7), we adapted the newly available ESPRESSO DRS (version 2.2.3) to HARPS-N and developed new optimized recipes for the spectrograph. We then compared the first three years of HARPS-N solar data reduced with the current and new DRS. The most significant improvement brought by the new DRS is a strong decrease in the day-to-day radial-velocity scatter, from 1.27 to 1.07ms; this is thanks to a more robust method to derive wavelength solutions, but also to the use of calibrations closer in time. The newly derived solar radial-velocities are also better correlated with the chromospheric activity level of the Sun on the long-term, with a Pearson correlation coefficient of 0.93 compared to 0.77 before, which is expected from our understanding of stellar signals. Finally, we also discuss how HARPS-N spectral ghosts contaminate the measurement of the calcium activity index, and present an efficient technique to derive an index free of instrumental systematics. This paper presents a new data reduction software for HARPS-N, and demonstrates its improvements [...]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا