ﻻ يوجد ملخص باللغة العربية
We prove a generalisation of the correspondence, due to Resende and Lawson--Lenz, between etale groupoids---which are topological groupoids whose source map is a local homeomorphisms---and complete pseudogroups---which are inverse monoids equipped with a particularly nice representation on a topological space. Our generalisation improves on the existing functorial correspondence in four ways. Firstly, we enlarge the classes of maps appearing to each side. Secondly, we generalise on one side from inverse monoids to inverse categories, and on the other side, from etale groupoids to what we call partite etale groupoids. Thirdly, we generalise from etale groupoids to source-etale categories, and on the other side, from inverse monoids to restriction monoids. Fourthly, and most far-reachingly, we generalise from topological etale groupoids to etale groupoids internal to any join restriction category C with local glueings; and on the other side, from complete pseudogroups to ``complete C-pseudogroups, i.e., inverse monoids with a nice representation on an object of C. Taken together, our results yield an equivalence, for a join restriction category C with local glueings, between join restriction categories with a well-behaved functor to C, and partite source-etale internal categories in C. In fact, we obtain this by cutting down a larger adjunction between arbitrary restriction categories over C, and partite internal categories in C. Beyond proving this main result, numerous applications are given, which reconstruct and extend existing correspondences in the literature, and provide general formulations of completion processes.
By a ring groupoid we mean an animated ring whose i-th homotopy groups are zero for all i>1. In this expository note we give an elementary treatment of the (2,1)-category of ring groupoids (i.e., without referring to general animated rings and with
We generalise the construction of the Lie algebroid of a Lie groupoid so that it can be carried out in any tangent category. First we reconstruct the bijection between left invariant vector fields and source constant tangent vectors based at an ident
This paper is a fundamental study of comodules and contramodules over a comonoid in a closed monoidal category. We study both algebraic and homotopical aspects of them. Algebraically, we enrich the comodule and contramodule categories over the origin
We study lax families of adjoints from a fibrational viewpoint, obtaining a version of the mate correspondence for (op)lax natural transformations of functors from an $infty$-category to the $(infty,2)$-category of $infty$-categories. We apply this t
We introduce the notions of proto-complete, complete, complete* and strong-complete objects in pointed categories. We show under mild conditions on a pointed exact protomodular category that every proto-complete (respectively complete) object is the