ﻻ يوجد ملخص باللغة العربية
Although recent experiments and theories have shown a variety of exotic transport properties of non-equilibrium quasiparticles (QPs) in superconductor (SC)-based devices with either Zeeman or exchange spin-splitting, how QP interplays with magnon spin currents remains elusive. Here, using non-local magnon spin-transport devices where a singlet SC (Nb) on top of a ferrimagnetic insulator (Y3Fe5O12) serves as a magnon spin detector, we demonstrate that the conversion efficiency of magnon spin to QP charge via inverse spin-Hall effect (iSHE) in such an exchange-spin-split SC can be greatly enhanced by up to 3 orders of magnitude compared with that in the normal state, particularly when its interface superconducting gap matches the magnon spin accumulation. Through systematic measurements with varying the current density and SC thickness, we identify that superconducting coherence peaks and exchange spin-splitting of the QP density-of-states, yielding a larger spin excitation while retaining a modest QP charge-imbalance relaxation, are responsible for the giant QP iSHE. The latter exchange-field-modified QP relaxation is experimentally proved by spatially resolved measurements with varying the separation of electrical contacts on the spin-split Nb.
In an easy-plane antiferromagnet with the Dzyaloshinskii-Moriya interaction (DMI), magnons are subject to an effective spin-momentum locking. An in-plane temperature gradient can generate interfacial accumulation of magnons with a specified polarizat
Conversion of traveling magnons into an electron carried spin current is demonstrated in a time resolved experiment using a spatially separated inductive spin-wave source and an inverse spin Hall effect (ISHE) detector. A short spin-wave packet is ex
An in-plane magnetic field applied to an Ising superconductor converts spin-singlet Cooper pairs to spin-triplet ones. In this work, we study a Josephson junction formed by two Ising superconductors that are proximitized by ferromagnetic layers. This
We investigate magnetization dynamics in a spin-Hall oscillator using a direct current measurement as well as conventional microwave spectrum analysis. When the current applies an anti-damping spin-transfer torque, we observe a change in resistance w
In the spin energy excitation mode of normal metals and superconductors, spin up and down electrons (or quasiparticles) carry different heat currents. This mode occurs only when spin up and down energy distribution functions are non-identical, most s