ترغب بنشر مسار تعليمي؟ اضغط هنا

Predicting 21cm-line map from Lyman $alpha$ emitter distribution with Generative Adversarial Networks

77   0   0.0 ( 0 )
 نشر من قبل Shintaro Yoshiura Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The radio observation of 21,cm-line signal from the Epoch of Reionization (EoR) enables us to explore the evolution of galaxies and intergalactic medium in the early universe. However, the detection and imaging of the 21,cm-line signal are tough due to the foreground and instrumental systematics. In order to overcome these obstacles, as a new approach, we propose to take a cross correlation between observed 21,cm-line data and 21,cm-line images generated from the distribution of the Lyman-$alpha$ emitters (LAEs) through machine learning. In order to create 21,cm-line maps from LAE distribution, we apply conditional Generative Adversarial Network (cGAN) trained with the results of our numerical simulations. We find that the 21,cm-line brightness temperature maps and the neutral fraction maps can be reproduced with correlation function of 0.5 at large scales $k<0.1~{rm Mpc}^{-1}$. Furthermore, we study the detectability of the the cross correlation assuming the the LAE deep survey of the Subaru Hyper Suprime Cam, the 21,cm observation of the MWA Phase II and the presence of the foreground residuals. We show that the signal is detectable at $k < 0.1~{rm Mpc}^{-1}$ with 1000 hours of MWA observation even if the foreground residuals are 5 times larger than the 21,cm-line power spectrum. Our new approach of cross correlation with image construction using the cGAN can not only boost the detectability of EoR 21,cm-line signal but also allow us to estimate the 21,cm-line auto-power spectrum.



قيم البحث

اقرأ أيضاً

We study the signatures of reionization and ionizing properties of the early galaxies in the cross-correlations between the 21cm emission from the spin-flip transition of neutral hydrogen (HI) and the underlying galaxy population, in particular a sub -population of galaxies visible as Lyman Alpha Emitters (LAEs). With both observables simultaneously derived from a $zsimeq6.6$ hydrodynamical simulation (GADGET-2) snapshot post-processed with a radiative transfer code (pCRASH) and a dust model, we perform a parameter study and aim to constrain both the average intergalactic medium (IGM) ionization state ($1-langle chi_{HI} rangle$) and the reionization topology (outside-in versus inside-out). We find that in our model LAEs occupy the densest and most-ionized regions resulting in a very strong anti-correlation between the LAEs and the 21cm emission. A 1000h SKA-LOW1 - Subaru Hyper Suprime Cam experiment can provide constraints on $langle chi_{HI} rangle$, allowing us to distinguish between IGM ionization levels of 50%, 25%, 10% and fully ionized at scales $r<10$ comoving Mpc (assuming foreground avoidance for SKA). Our results support the inside-out reionization scenario where the densest knots (under-dense voids) are ionized first (last) for $langle chi_{HI} rangle >= 0.1$. Further, 1000h SKA-LOW1 observations should be able to confirm the inside-out scenario by detecting a lower 21cm brightness temperature (by about 2-10 mK) in the densest regions ($> 2$ arcminute scales) hosting LAEs compared to lower-density regions devoid of them.
Detection of the redshifted 21cm-line signal from neutral hydrogen in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) is complicated by intense foregrounds such as galactic synchrotron and extragalactic radio galaxies. The 21cm- Lyman-$alpha$ emitter(LAE) cross-correlation is one of the tools available to reduce the foreground effects because the foreground emission from such radio sources is statistically independent of LAE distribution. LAE surveys during the EoR at redshifts $z=6.6$ and $7.3$ are ongoing by the Subaru Hyper Suprime-Cam (HSC). Additionally, Prime Focus Spectrograph (PFS) will provide precise redshift information of the LAEs discovered by the HSC survey. In this paper, we investigate the detectability of the 21cm signal with the 21cm-LAE cross-correlation by using our improved reionization simulations. We also focus on the error budget and evaluate it quantitatively in order to consider a strategy to improve the signal-to-noise ratio. In addition, we explore an expansion of the LAE survey to suggest optimal survey parameters and show a potential to measure a characteristic size of ionized bubbles via the turnover scale of the cross-power spectrum. As a result, we find that the Murchison Widefield Array (MWA) has ability to detect the cross-power spectrum signal on large scales by combining LAE Deep field survey of HSC. We also show that the sensitivity is improved dramatically at small scales by adding redshift information from the PFS measurements. The Square Kilometre Array (SKA) has a potential to measure the turnover scale with an accuracy of $6times10^{-3}~{rm Mpc^{-1}}$.
Detecting $rm H_I$ 21cm line in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) suffers from foreground contamination such as Galactic synchrotron and extragalactic radio sources. Cross-correlation between the 21cm line and Lyma n-$alpha$ emitter (LAE) galaxies is a powerful tool to identify the 21cm signal since the 21cm line emission has correlation with LAEs while the LAEs are statistically independent of the foregrounds. So far, the detectability of 21cm-LAE cross-power spectrum has been investigated with simple LAE models where the observed Ly$alpha$ luminosity is proportional to the dark matter halo mass. However, the previous models were inconsistent with the latest observational data of LAEs obtained with Subaru/Hyper Suprime-Cam (HSC). Here, we revisit the detectability of 21cm-LAE cross-power spectrum adopting a state-of-the-art LAE model consistent with all Subaru/HSC observations such as the Ly$alpha$ luminosity function, LAE angular auto-correlation, and the LAE fractions in the continuum selected galaxies. We find that resultant cross-power spectrum with the updated LAE model is reduced at small scales ($ksim 1 rm Mpc^{-1}$) compared to the simple models, while the amplitudes at large scales ($k lesssim 0.2 rm Mpc^{-1}$) are not affected so much. We conclude that the large-scale signal would be detectable with Square Kilometre Array (SKA) and HSC LAE cross-correlation but detecting the small scale signal would require an extended HSC LAE survey with an area of $sim 75 rm deg^2$ or 3000 hrs observation time of 21cm line with SKA.
Cross-correlation between the redshifted 21 cm signal and Lyman-{alpha} emitters (LAEs) is powerful tool to probe the Epoch of Reionization (EoR). Although the cross-power spectrum (PS) has an advantage of not correlating with foregrounds much bright er than the 21 cm signal, the galactic and extra-galactic foregrounds prevent detection since they contribute to the variance of the cross PS. Therefore, strategies for mitigating foregrounds are required. In this work, we study the impact of foreground avoidance on the measurement of the 21 cm-LAE cross-correlation. We then simulate the 21 cm observation as observed by the Murchison Widefield Array (MWA). The point source foreground is modelled from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey catalogue, and the diffuse foreground is evaluated using a parametric model. For LAE observations, we assume a large survey of the Subaru Hyper Supreme-Cam (HSC), with spectroscopic observations of the Prime Focus Spectrograph (PFS). To predict the 21 cm signal, we employ a numerical simulation combining post processed radiative transfer and radiation hydrodynamics. Using these models, the signal-to-noise ratio of 2D PS shows the foreground contamination dominates the error of cross-PS even in the so-called `EoR window. We find that at least 99% of the point source foreground and 80% of the galactic diffuse foreground must be removed to measure the EoR signal at large scales $k<0.5 h rm Mpc^{-1}$. Additionally, a sensitivity 80 times larger than that of the MWA operating with 128 tiles and 99% of the point source foreground removal are required for a detection at small scales.
Detections of the cross correlation signal between the 21cm signal during reionization and high-redshift Lyman Alpha emitters (LAEs) are subject to observational uncertainties which mainly include systematics associated with radio interferometers and LAE selection. These uncertainties can be reduced by increasing the survey volume and/or the survey luminosity limit, i.e. the faintest detectable Lyman Alpha (Ly$alpha$) luminosity. We use our model of high-redshift LAEs and the underlying reionization state to compute the uncertainties of the 21cm-LAE cross correlation function at $zsimeq6.6$ for observations with SKA1-Low and LAE surveys with $Delta z=0.1$ for three different values of the average IGM ionization state ($langlechi_mathrm{HI}rangle$=0.1, 0.25, 0.5). At $zsimeq6.6$, we find SILVERRUSH type surveys, with a field of view of 21 deg$^2$ and survey luminosity limits of $L_alphageq7.9times10^{42}$erg~s$^{-1}$, to be optimal to distinguish between an inter-galactic medium (IGM) that is 50%, 25% and 10% neutral, while surveys with smaller fields of view and lower survey luminosity limits, such as the 5 and 10 deg$^2$ surveys with WFIRST, can only discriminate between a 50% and 10% neutral IGM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا