ﻻ يوجد ملخص باللغة العربية
Fossil groups (FGs) have been discovered twenty-five years ago, and are now defined as galaxy groups with an X-ray luminosity higher than $10^{42} h_{50}^{-2}$ erg s$^{-1}$ and a brightest group galaxy brighter than the other group members by at least 2 magnitudes. However, the scenario of their formation remains controversial. We propose here a probabilistic analysis of FGs, extracted from the large catalogue of candidate groups and clusters detected by Sarron et al. (2018) in the CFHTLS survey, based on photometric redshifts, to investigate their position in the cosmic web and probe their environment. Based on spectroscopic and photometric redshifts, we estimate the probability of galaxies to belong to a galaxy structure, and by imposing the condition that the brightest group galaxy is at least brighter than the others by 2 magnitudes, we compute the probability for a given galaxy structure to be a FG. We analyse the mass distribution of these candidate FGs, and estimate their distance to the filaments and nodes of the cosmic web in which they are embedded. We find that the structures with masses lower than $2.4times 10^{14}$ M$_odot$ have the highest probabilities of being fossil groups (PFG). Overall, structures with PFG$geq$50% are located close to the cosmic web filaments (87% are located at less than 1 Mpc from their nearest filament). They are preferentially four times more distant from their nearest node than from their nearest filament. We confirm that FGs have small masses and are rare. They seem to reside closeby cosmic filaments and do not survive in nodes. Being in a poor environment could therefore be the driver of FG formation, the number of nearby galaxies not being sufficient to compensate for the cannibalism of the central group galaxy.
We report on the X-ray and optical observations of galaxy groups selected from the 2dfGRS group catalog, to explore the possibility that galaxy groups hosting a giant elliptical galaxy and a large optical luminosity gap present between the two bright
We want to study how the velocity segregation and the radial profile of the velocity dispersion depend on the prominence of the brightest cluster galaxies (BCGs). We divide a sample of 102 clusters and groups of galaxies into four bins of magnitude g
We present the results of a new search for galaxy-scale strong lensing systems in CFHTLS Wide. Our lens-finding technique involves a preselection of potential lens galaxies, applying simple cuts in size and magnitude. We then perform a Principal Comp
The Ophiuchus galaxy cluster exhibits a curious concave gas density discontinuity at the edge of its cool core. It was discovered in the Chandra X-ray image by Werner and collaborators, who considered a possibility of it being a boundary of an AGN-in
We present a proof of concept of a new galaxy group finder method, Markov graph Clustering (MCL; Van Dongen 2000) that naturally handles probabilistic linking criteria. We introduce a new figure of merit, the variation of information statistic (VI; M