ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin mass differences of singly heavy baryons

84   0   0.0 ( 0 )
 نشر من قبل Hyun-Chul Kim
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the isospin mass differences of singly heavy baryons, based on a pion mean-field approach. We consider both the electromagnetic interactions and the hadronic contributions that arise from the mass difference of the up and down quarks. The relevant parameters have been already fixed by the baryon octet. In addition, we introduce the strong hyperfine interactions between the light quarks inside a chiral soliton and the Coulomb interactions between the chiral soliton and a heavy quark. The numerical results are in good agreement with the experimental data. In particular, the results for the neutral mass relations, which contain only the electromagnetic contributions, are in remarkable agreement with the data, which implies that the pion mean field approach provides a good description of the singly heavy baryons.



قيم البحث

اقرأ أيضاً

434 - Harald Fritzsch 2008
We discuss the mass differences for isospin multiplets of the charmed and b-flavored baryons. The mass of the neutral b-flavored sigma baryon, which is not measured, is calculated. We point out, that the measurements of the mass differences between the charmed sigma and chi baryons might be wrong.
We study the electromagnetic form factors of the lowest-lying singly heavy baryons in a pion mean-field approach, which is also known as the SU(3) chiral quark-soliton model. In the limit of the heavy-quark mass, the dynamics inside a singly heavy ba ryon is governed by the $N_c-1$ valence quarks, while the heavy quark remains as a mere static color source. In this framework, a singly heavy baryon is described by combining the colored soliton with the singly heavy quark. In the infinitely heavy-quark mass limit, we can compute the electric quadrupole form factors of the baryon sextet with spin 3/2 with the rotational $1/N_c$ and linear corrections of the explicit flavor SU(3) symmetry breaking taken into account. We find that the sea-quark contributions or the Dirac-sea level contributions dominate over the valence-quark contributions in lower $Q^2$ region. We examined the effects of explicit flavor SU(3) symmetry breaking in detail. The numerical results are also compared with the recent data from the lattice calculation with the unphysical value of the pion mass considered, which was used in the lattice calculation.
150 - R.M. Albuquerque 2009
We extract directly (for the first time) the charmed (C=1) and bottom (B=-1) heavy-baryons (spin 1/2 and 3/2) mass-splittings due to SU(3) breaking using double ratios of QCD spectral sum rules (QSSR) in full QCD, which are less sensitive to the exac t value and definition of the heavy quark mass, to the perturbative radiative corrections and to the QCD continuum contributions than the simple ratios commonly used for determining the heavy baryon masses. Noticing that most of the mass-splittings are mainly controlled by the ratio kappa= <bar ss>/<bar dd> of the condensate, we extract this ratio, by allowing 1 sigma deviation from the observed masses of the Xi_{c,b} and of the Omega_c. We obtain: kappa=0.74(3), which improves the existing estimates: kappa=0.70(10) from light hadrons. Using this value, we deduce M_{Omega_b}=6078.5(27.4) MeV which agrees with the recent CDF data but disagrees by 2.4 sigma with the one from D0. Predictions of the Xi_Q and of the spectra of spin 3/2 baryons containing one or two strange quark are given in Table 2. Predictions of the hyperfine splittings Omega*_Q- Omega_Q and Xi*_Q-Xi_Q are also given in Table 3. Starting for a general choice of the interpolating currents for the spin 1/2 baryons, our analysis favours the optimal value of the mixing angle b= (-1/5 -- 0) found from light and non-strange heavy baryons.
The mass spectra of singly charmed and bottom baryons, $Lambda_{c/b}(1/2^pm,3/2^-)$ and $Xi_{c/b}(1/2^pm,3/2^-)$, are investigated using a nonrelativistic potential model with a heavy quark and a light diquark. The masses of the scalar and pseudoscal ar diquarks are taken from a chiral effective theory. The effect of $U_A(1)$ anomaly induces an inverse hierarchy between the masses of strange and non-strange pseudoscalar diquarks, which leads to a similar inverse mass ordering in $rho$-mode excitations of singly heavy baryons.
The strong and radiative decays of the low-lying $lambda$-mode $D$-wave $Lambda_{c(b)}$, $Sigma_{c(b)}$, $Xi_{c(b)}$, $Xi_{c(b)}$, and $Omega_{c(b)}$ baryons are studied in a constituent quark model. Our calculation shows the following: (i) The missi ng $lambda$-mode $D$-wave $Omega_{c(b)}$, $Lambda_{b}$, and $Xi_{b}$ baryons have a relatively narrow decay width of a few MeV or a few tens of MeV and their dominant strong and radiative decay channels can be ideal for searching for their signals in future experiments. (ii) The $lambda$-mode $1D$-wave excitations in the $Sigma_{c(b)}$ and $Xi_{c(b)}$ families appear to have a relatively broad width of $sim 50-200$ MeV.Most of the $1D$-wave states have large decay rates into the $1P$-wave heavy baryons via the pionic or kaonic strong decay processes, which should be taken seriously in future observations. (iii) Both $Lambda_c(2860)$ and $Xi_c(3050)$ seem to favor the $J^P=3/2^+$ excitation $|^2D_{lambdalambda} frac{3}{2}^+ rangle$ of $bar{mathbf{3}}_F$, while both $Lambda_c(2880)$ and $Xi_c(3080)$ may be assigned as the $J^P=5/2^+$ excitation $|^2D_{lambdalambda} frac{5}{2}^+ rangle$ of $bar{mathbf{3}}_F$. The nature of $Xi_c(3050)$ and $Xi_c(3080)$ could be tested by the radiative transitions $Xi_c(3055)^0to Xi_c(2790)^0 gamma$ and $Xi_c(3080)^0 to Xi_c(2815)^0 gamma$, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا