ﻻ يوجد ملخص باللغة العربية
Time series forecasting is an active research topic in academia as well as industry. Although we see an increasing amount of adoptions of machine learning methods in solving some of those forecasting challenges, statistical methods remain powerful while dealing with low granularity data. This paper introduces a refined Bayesian exponential smoothing model with the help of probabilistic programming languages including Stan. Our model refinements include additional global trend, transformation for multiplicative form, noise distribution and choice of priors. A benchmark study is conducted on a rich set of time-series data sets for our models along with other well-known time series models.
Sampling from a complex distribution $pi$ and approximating its intractable normalizing constant Z are challenging problems. In this paper, a novel family of importance samplers (IS) and Markov chain Monte Carlo (MCMC) samplers is derived. Given an i
Probabilistic forecasts in the form of probability distributions over future events have become popular in several fields including meteorology, hydrology, economics, and demography. In typical applications, many alternative statistical models and da
MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper an approach to reduce the computational costs of such algorithms by a si
Prediction rule ensembles (PREs) are sparse collections of rules, offering highly interpretable regression and classification models. This paper presents the R package pre, which derives PREs through the methodology of Friedman and Popescu (2008). Th
Although models for count data with over-dispersion have been widely considered in the literature, models for under-dispersion -- the opposite phenomenon -- have received less attention as it is only relatively common in particular research fields su