ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic signatures of next-nearest-neighbor hopping in the charge and spin dynamics of doped one-dimensional antiferromagnets

86   0   0.0 ( 0 )
 نشر من قبل Umesh Kumar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the impact of next-nearest-neighbor (nnn) hopping on the low-energy collective excitations of strongly correlated doped antiferromagnetic cuprate spin chains. Specifically, we use exact diagonalization and the density matrix renormalization group method to study the single-particle spectral function, the dynamical spin and charge structure factors, and the Cu $L$-edge resonant inelastic x-ray scattering (RIXS) intensity of the doped $t$-$t^prime$-$J$ model for a set of $t^prime$ values. We find evidence for the breakdown of spin-charge separation as $|t^prime|$ increases and identify its fingerprints in the dynamical response functions. The inclusion of nnn hopping couples the spinon and holon excitations, resulting in the formation of a spin-polaron, where a ferromagnetic spin polarization cloud dresses the doped carrier. The spin-polaron manifests itself as additional spectral weight in the dynamical correlation functions, which appear simultaneously in the spin- and charge-sensitive channels. We also demonstrate that RIXS can provide a unique view of the spin-polaron, due to its sensitivity to both the spin and charge degrees of freedom.



قيم البحث

اقرأ أيضاً

98 - S. Nishimoto , T. Shirakawa , 2007
The dynamical density-matrix renormalization group technique is used to calculate spin and charge excitation spectra in the one-dimensional (1D) Hubbard model at quarter filling with nearest-neighbor $t$ and next-nearest-neighbor $t$ hopping integral s. We consider a case where $t$ ($>0$) is much smaller than $t$ ($>0$). We find that the spin and charge excitation spectra come from the two nearly independent $t$-chains and are basically the same as those of the 1D Hubbard (and t-J) chain at quarter filling. However, we find that the hopping integral $t$ plays a crucial role in the short-range spin and charge correlations; i.e., the ferromagnetic spin correlations between electrons on the neighboring sites is enhanced and simultaneously the spin-triplet pairing correlations is induced, of which the consequences are clearly seen in the calculated spin and charge excitation spectra at low energies.
577 - S. Nishimoto , K. Sano , 2007
We study the one-dimensional Hubbard model with nearest-neighbor and next-nearest-neighbor hopping integrals by using the density-matrix renormalization group (DMRG) method and Hartree-Fock approximation. Based on the calculated results for the spin gap, total-spin quantum number, and Tomonaga-Luttinger-liquid parameter, we determine the ground-state phase diagram of the model in the entire filling and wide parameter region. We show that, in contrast to the weak-coupling regime where a spin-gapped liquid phase is predicted in the region with four Fermi points, the spin gap vanishes in a substantial region in the strong-coupling regime. It is remarkable that a large variety of phases, such as the paramagnetic metallic phase, spin-gapped liquid phase, singlet and triplet superconducting phases, and fully polarized ferromagnetic phase, appear in such a simple model in the strong-coupling regime.
We calculate the local Green function for a quantum-mechanical particle with hopping between nearest and next-nearest neighbors on the Bethe lattice, where the on-site energies may alternate on sublattices. For infinite connectivity the renormalized perturbation expansion is carried out by counting all non-self-intersecting paths, leading to an implicit equation for the local Green function. By integrating out branches of the Bethe lattice the same equation is obtained from a path integral approach for the partition function. This also provides the local Green function for finite connectivity. Finally, a recently developed topological approach is extended to derive an operator identity which maps the problem onto the case of only nearest-neighbor hopping. We find in particular that hopping between next-nearest neighbors leads to an asymmetric spectrum with additional van-Hove singularities.
The electronic structure of the quasi-one-dimensional organic conductor TTF-TCNQ is studied by angle-resolved photoelectron spectroscopy (ARPES). The experimental spectra reveal significant discrepancies to band theory. We demonstrate that the measur ed dispersions can be consistently mapped onto the one-dimensional Hubbard model at finite doping. This interpretation is further supported by a remarkable transfer of spectral weight as function of temperature. The ARPES data thus show spectroscopic signatures of spin-charge separation on an energy scale of the conduction band width.
Low-energy magnetic excitations in the spin-1/2 chain compound (C$_6$H$_9$N$_2$)CuCl$_3$ [known as (6MAP)CuCl$_3$] are probed by means of tunable-frequency electron spin resonance. Two modes with asymmetric (with respect to the $h u=gmu_B B$ line) fr equency-field dependences are resolved, illuminating the striking incompatibility with a simple uniform $S=frac{1}{2}$ Heisenberg chain model. The unusual ESR spectrum is explained in terms of the recently developed theory for spin-1/2 chains, suggesting the important role of next-nearest-neighbor interactions in this compound. Our conclusion is supported by model calculations for the magnetic susceptibility of (6MAP)CuCl$_3$, revealing a good qualitative agreement with experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا