ترغب بنشر مسار تعليمي؟ اضغط هنا

High-resolution Transmission Spectroscopy of MASCARA-2 b with EXPRES

94   0   0.0 ( 0 )
 نشر من قبل Jens Hoeijmakers
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report detections of atomic species in the atmosphere of MASCARA-2 b, using the first transit observations obtained with the newly commissioned EXPRES spectrograph. EXPRES is a highly stabilised optical echelle spectrograph, designed to detect stellar reflex motions with amplitudes down to 30 cm/s, and was recently deployed at the Lowell Discovery Telescope. By analysing the transmission spectrum of the ultra-hot Jupiter MASCARA-2 b using the cross-correlation method, we confirm previous detections of Fe I, Fe II and Na I, which likely originate in the upper regions of the inflated atmosphere. In addition, we report significant detections of Mg I and Cr II. The absorption strengths change slightly with time, possibly indicating different temperatures and chemistry in the day-side and night-side terminators. Using the effective stellar line-shape variation induced by the transiting planet, we constrain the projected spin-orbit misalignment of the system to $1.6pm3.1$ degrees, consistent with an aligned orbit. We demonstrate that EXPRES joins a suite of instruments capable of phase-resolved spectroscopy of exoplanet atmospheres.

قيم البحث

اقرأ أيضاً

Using high-resolution ground-based transmission spectroscopy to probe exoplanetary atmospheres is difficult due to the inherent telluric contamination from absorption in Earths atmosphere. A variety of methods have previously been used to remove tell uric features in the optical regime and calculate the planetary transmission spectrum. In this paper we present and compare two such methods, specifically focusing on Na detections using high-resolution optical transmission spectra: (1) calculating the telluric absorption empirically based on the airmass, and (2) using a model of the Earths transmission spectrum. We test these methods on the transmission spectrum of the hot Jupiter HD 189733 b using archival data obtained with the HARPS spectrograph during three transits. Using models for Centre-to-Limb Variation and the Rossiter-McLaughlin effect, spurious signals which are imprinted within the transmission spectrum are reduced. We find that correcting tellurics with an atmospheric model of the Earth is more robust and produces consistent results when applied to data from different nights with changing atmospheric conditions. We confirm the detection of sodium in the atmosphere of HD 189733 b, with doublet line contrasts of -0.64 $pm$ 0.07 % (D2) and -0.53 $pm$ 0.07 % (D1). The average line contrast corresponds to an effective photosphere in the Na line located around 1.13 R$_p$. We also confirm an overall blueshift of the line centroids corresponding to net atmospheric eastward winds with a speed of 1.8 $pm$ 1.2 km/s. Our study highlights the importance of accurate telluric removal for consistent and reliable characterisation of exoplanetary atmospheres using high-resolution transmission spectroscopy.
Consideration of both low- and high-resolution transmission spectroscopy is key for obtaining a comprehensive picture of exoplanet atmospheres. In studies of transmission spectra, the continuum information is well established with low-resolution spec tra, while the shapes of individual lines are best constrained with high-resolution observations. In this work, we aim to merge high- with low-resolution transmission spectroscopy. We present the analysis of three primary transits of WASP-69b in the VIS channel of the CARMENES instrument and perform a combined low- and high-resolution analysis using additional data from HARPS-N, OSIRIS/GTC, and WFC3/HST already available in the literature. During the first CARMENES observing night, we detected the planet Na D$_{2}$ and D$_{1}$ lines at $sim 7sigma$ and $sim 3sigma$ significance levels, respectively. We measured a D$_{2}$/D$_{1}$ intensity ratio of 2.5$pm$0.7, which is in agreement with previous HARPS-N observations. Our modelling of WFC3 and OSIRIS data suggests strong Rayleigh scattering, solar to super-solar water abundance, and a highly muted Na feature in the atmosphere of this planet, in agreement with previous investigations of this target. We use the continuum information retrieved from the low-resolution spectroscopy as a prior to break the degeneracy between the Na abundance, reference pressure, and thermosphere temperature for the high-resolution spectroscopic analysis. We fit the Na D$_{1}$ and D$_{2}$ lines individually and find that the posterior distributions of the model parameters agree with each other within 1$sigma$. Our results suggest that local thermodynamic equilibrium processes can explain the observed D$_{2}$/D$_{1}$ ratio because the presence of haze opacity mutes the absorption features.
Aims. We report on ESPRESSO high-resolution transmission spectroscopic observations of two primary transits of the highly-irradiated, ultra-hot Jupiter-size planet WASP-76b. We investigate the presence of several key atomic and molecular features of interest that may reveal the atmospheric properties of the planet. Methods. We extracted two transmission spectra of WASP-76b with R approx 140,000 using a procedure that allowed us to process the full ESPRESSO wavelength range (3800-7880 A) simultaneously. We observed that at a high signal-to-noise ratio, the continuum of ESPRESSO spectra shows wiggles that are likely caused by an interference pattern outside the spectrograph. To search for the planetary features, we visually analysed the extracted transmission spectra and cross-correlated the observations against theoretical spectra of different atomic and molecular species. Results. The following atomic features are detected: Li I, Na I, Mg I, Ca II, Mn I, K I, and Fe I. All are detected with a confidence level between 9.2 sigma (Na I) and 2.8 sigma (Mg I). We did not detect the following species: Ti I, Cr I, Ni I, TiO, VO, and ZrO. We impose the following 1 sigma upper limits on their detectability: 60, 77, 122, 6, 8, and 8 ppm, respectively. Conclusions. We report the detection of Li I on WASP-76b for the first time. In addition, we found the presence of Na I and Fe I as previously reported in the literature. We show that the procedure employed in this work can detect features down to the level of ~ 0.1 % in the transmission spectrum and ~ 10 ppm by means of a cross-correlation method. We discuss the presence of neutral and singly ionised features in the atmosphere of WASP-76b.
High-contrast medium resolution spectroscopy has been used to detect molecules such as water and carbon monoxide in the atmospheres of gas giant exoplanets. In this work, we show how it can be used to derive radial velocity (RV) measurements of direc tly imaged exoplanets. Improving upon the traditional cross-correlation technique, we develop a new likelihood based on joint forward modelling of the planetary signal and the starlight background (i.e., speckles). After marginalizing over the starlight model, we infer the barycentric RV of HR 8799 b and c in 2010 yielding -9.2 +- 0.5 km/s and -11.6 +- 0.5 km/s respectively. These RV measurements help to constrain the 3D orientation of the orbit of the planet by resolving the degeneracy in the longitude of ascending node. Assuming coplanar orbits for HR 8799 b and c, but not including d and e, we estimate Omega = 89 (+27,-17) deg and i = 20.8 (4.5,-3.7) deg.
The four directly imaged planets orbiting the star HR 8799 are an ideal laboratory to probe atmospheric physics and formation models. We present more than a decades worth of Keck/OSIRIS observations of these planets, which represent the most detailed look at their atmospheres to-date by its resolution and signal to noise ratio. We present the first direct detection of HR 8799 d, the second-closest known planet to the star, at moderate spectral resolution with Keck/OSIRIS (K-band; R~4,000). Additionally, we uniformly analyze new and archival OSIRIS data (H and K band) of HR 8799 b, c, and d. First, we show detections of water (H2O) and carbon monoxide (CO) in the three planets and discuss the ambiguous case of methane (CH4) in the atmosphere of HR 8799b. Then, we report radial velocity (RV) measurements for each of the three planets. The RV measurement of HR 8799 d is consistent with predictions made assuming coplanarity and orbital stability of the HR 8799 planetary system. Finally, we perform a uniform atmospheric analysis on the OSIRIS data, published photometric points, and low resolution spectra. We do not infer any significant deviation from to the stellar value of the carbon to oxygen ratio (C/O) of the three planets, which therefore does not yet yield definitive information about the location or method of formation. However, constraining the C/O ratio for all the HR 8799 planets is a milestone for any multiplanet system, and particularly important for large, widely separated gas giants with uncertain formation processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا