ﻻ يوجد ملخص باللغة العربية
The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.
It has recently been suggested that the neutrino mass hierarchy can be experimentally determined from the oscillation pattern of atmospheric neutrinos passing through the Earth by measuring the two-dimensional arrival pattern of neutrinos in energy a
KM3NeT, a neutrino telescope currently under construction in the Mediterranean Sea, consists of a network of large-volume Cherenkov detectors. Its two different sites, ORCA and ARCA, are optimised for few GeV and TeV-PeV neutrino energies, respective
A prototype detection unit of the KM3NeT deep-sea neutrino telescope has been installed at 3500m depth 80km offshore the Italian coast. KM3NeT in its final configuration will contain several hundreds of detection units. Each detection unit is a mecha
Deep convolutional neural networks (DCNs) are a promising machine learning technique to reconstruct events recorded by imaging atmospheric Cherenkov telescopes (IACTs), but require optimization to reach full performance. One of the most pressing chal
Several theories of particle physics beyond the Standard Model consider that neutrinos can decay. In this work we assume that the standard mechanism of neutrino oscillations is altered by the decay of the heaviest neutrino mass state into a sterile n