ﻻ يوجد ملخص باللغة العربية
We discuss the effects of movement and spatial heterogeneity on population dynamics via reaction-diffusion-advection models, focusing on the persistence, competition, and evolution of organisms in spatially heterogeneous environments. Topics include Lokta-Volterra competition models, river models, evolution of biased movement, phytoplankton growth, and spatial spread of epidemic disease. Open problems and conjectures are presented.
In this paper, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their u
This is the second part of our study of the Inertial Manifolds for 1D systems of reaction-diffusion-advection equations initiated in cite{KZI} and it is devoted to the case of periodic boundary conditions. It is shown that, in contrast to the case of
This paper aims to explore the temporal-spatial spreading and asymptotic behaviors of West Nile virus by a reaction-advection-diffusion system with free boundaries, especially considering the impact of advection term on the extinction and persistence
This is the first part of our study of inertial manifolds for the system of 1D reaction-diffusion-advection equations which is devoted to the case of Dirichlet or Neumann boundary conditions. Although this problem does not initially possess the spect
Finite difference/element/volume methods of discretising PDEs impose a subgrid scale interpolation on the dynamics. In contrast, the holistic discretisation approach developed herein constructs a natural subgrid scale field adapted to the whole syste