ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher derivative scalar-tensor theory and spatially covariant gravity: the correspondence

162   0   0.0 ( 0 )
 نشر من قبل Xian Gao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the correspondence between generally covariant higher derivative scalar-tensor theory and spatially covariant gravity theory. The building blocks are the scalar field and spacetime curvature tensor together with their generally covariant derivatives for the former, and the spatially covariant geometric quantities together with their spatially covariant derivatives for the later. In the case of a single scalar degree of freedom, they are transformed to each other by gauge fixing and recovering procedures, of which we give the explicit expressions. We make a systematic classification of all the scalar monomials in the spatially covariant gravity according to the total number of derivatives up to $d=4$, and their correspondence to the scalar-tensor monomials. We discusse the possibility of using spatially covariant monomials to generate ghostfree higher derivative scalar-tensor theories. We also derive the covariant 3+1 decomposition without fixing any specific coordinate, which will be useful when performing a covariant Hamiltonian analysis.



قيم البحث

اقرأ أيضاً

76 - Xian Gao 2020
We investigate the ghostfree scalar-tensor theory with a timelike scalar field, with derivatives of the scalar field up to the third order and with the Riemann tensor up to the quadratic order. We build two types of linear spaces. One is the set of l inearly independent generally covariant scalar-tensor monomials, the other is the set of linearly independent spatially covariant gravity monomials. We argue that these two types of linear space are isomorphic to each other in the sense of gauge fixing/recovering procedures. We then identify the subspaces in the spatially covariant gravity, which are spanned by linearly independent monomials built of the extrinsic and intrinsic curvature, the lapse function as well as their spatial derivatives, up to the fourth order in the total number of derivatives. The vectors in these subspaces, i.e., spatially covariant polynomials, automatically propagate at most three degrees of freedom. As a result, their images under the gauge recovering mappings are automatically the subspaces of scalar-tensor theory that propagate up to three degrees of freedom as long as the scalar field is timelike. The mappings from the spaces of spatially covariant gravity to the spaces of scalar-tensor theory are encoded in the projection matrices, of which we also derived the expressions explicitly. Our formalism and results can be useful in deriving the generally covariant higher derivative scalar-tensor theory without ghost(s).
76 - Xian Gao 2020
We make a full classification of scalar monomials built of the Riemann curvature tensor up to the quadratic order and of the covariant derivatives of the scalar field up to the third order. From the point of view of the effective field theory, the th ird or even higher order covariant derivatives of the scalar field are of the same order as the higher curvature terms, and thus should be taken into account. Moreover, higher curvature terms and higher order derivatives of the scalar field are complementary to each other, of which novel ghost-free combinations may exist. We make a systematic classification of all the possible monomials, according to the numbers of Riemann tensor and higher derivatives of the scalar field in each monomial. Complete basis of monomials at each order are derived, of which linear combinations may yield novel ghost-free Lagrangians. We also develop a diagrammatic representation of the monomials, which may help to simplify the analysis.
73 - Valerio Faraoni 2021
Previously, the Einstein equation has been described as an equation of state, general relativity as the equilibrium state of gravity, and $f({cal R})$ gravity as a non-equilibrium one. We apply Eckarts first order thermodynamics to the effective diss ipative fluid describing scalar-tensor gravity. Surprisingly, we obtain simple expressions for the effective heat flux, temperature of gravity, shear and bulk viscosity, and entropy density, plus a generalized Fourier law in a consistent Eckart thermodynamical picture. Well-defined notions of temperature and approach to equilibrium, missing in the current thermodynamics of spacetime scenarios, naturally emerge.
In the framework of spatially covariant gravity, it is natural to extend a gravitational theory by putting the lapse function $N$ and the spatial metric $h_{ij}$ on an equal footing. We find two sufficient and necessary conditions for ensuring two ph ysical degrees of freedom (DoF) for the theory with the lapse function being dynamical by Hamiltonian analysis. A class of quadratic actions with only two DoF is constructed. In the case that the coupling functions depend on $N$ only, we find that the spatial curvature term cannot enter the Lagrangian and thus this theory possesses no wave solution and cannot recover general relativity (GR). In the case that the coupling functions depend on the spatial derivatives of $N$, we perform a spatially conformal transformation on a class of quadratic actions with nondynamical lapse function to obtain a class of quadratic actions with $dot{N}$. We confirm this theory has two DoF by checking the two sufficient and necessary conditions. Besides, we find that a class of quadratic actions with two DoF can be transformed from GR by disformal transformation.
We hereby derive the Newtonian metric potentials for the fourth-derivative gravity including the one-loop logarithm quantum corrections. It is explicitly shown that the behavior of the modified Newtonian potential near the origin is improved respect to the classical one, but this is not enough to remove the curvature singularity in $r=0$. Our result is grounded on a rigorous proof based on numerical and analytic computations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا