ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Semantic Segmentation and Boundary Detection using Iterative Pyramid Contexts

92   0   0.0 ( 0 )
 نشر من قبل Zhen Mingmin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a joint multi-task learning framework for semantic segmentation and boundary detection. The critical component in the framework is the iterative pyramid context module (PCM), which couples two tasks and stores the shared latent semantics to interact between the two tasks. For semantic boundary detection, we propose the novel spatial gradient fusion to suppress nonsemantic edges. As semantic boundary detection is the dual task of semantic segmentation, we introduce a loss function with boundary consistency constraint to improve the boundary pixel accuracy for semantic segmentation. Our extensive experiments demonstrate superior performance over state-of-the-art works, not only in semantic segmentation but also in semantic boundary detection. In particular, a mean IoU score of 81:8% on Cityscapes test set is achieved without using coarse data or any external data for semantic segmentation. For semantic boundary detection, we improve over previous state-of-the-art works by 9.9% in terms of AP and 6:8% in terms of MF(ODS).



قيم البحث

اقرأ أيضاً

111 - Jie Li , Laiyan Ding , Rui Huang 2021
3D semantic scene completion and 2D semantic segmentation are two tightly correlated tasks that are both essential for indoor scene understanding, because they predict the same semantic classes, using positively correlated high-level features. Curren t methods use 2D features extracted from early-fused RGB-D images for 2D segmentation to improve 3D scene completion. We argue that this sequential scheme does not ensure these two tasks fully benefit each other, and present an Iterative Mutual Enhancement Network (IMENet) to solve them jointly, which interactively refines the two tasks at the late prediction stage. Specifically, two refinement modules are developed under a unified framework for the two tasks. The first is a 2D Deformable Context Pyramid (DCP) module, which receives the projection from the current 3D predictions to refine the 2D predictions. In turn, a 3D Deformable Depth Attention (DDA) module is proposed to leverage the reprojected results from 2D predictions to update the coarse 3D predictions. This iterative fusion happens to the stable high-level features of both tasks at a late stage. Extensive experiments on NYU and NYUCAD datasets verify the effectiveness of the proposed iterative late fusion scheme, and our approach outperforms the state of the art on both 3D semantic scene completion and 2D semantic segmentation.
Existing weakly supervised semantic segmentation (WSSS) methods usually utilize the results of pre-trained saliency detection (SD) models without explicitly modeling the connections between the two tasks, which is not the most efficient configuration . Here we propose a unified multi-task learning framework to jointly solve WSSS and SD using a single network, ie saliency, and segmentation network (SSNet). SSNet consists of a segmentation network (SN) and a saliency aggregation module (SAM). For an input image, SN generates the segmentation result and, SAM predicts the saliency of each category and aggregating the segmentation masks of all categories into a saliency map. The proposed network is trained end-to-end with image-level category labels and class-agnostic pixel-level saliency labels. Experiments on PASCAL VOC 2012 segmentation dataset and four saliency benchmark datasets show the performance of our method compares favorably against state-of-the-art weakly supervised segmentation methods and fully supervised saliency detection methods.
Semantic segmentation and semantic edge detection can be seen as two dual problems with close relationships in computer vision. Despite the fast evolution of learning-based 3D semantic segmentation methods, little attention has been drawn to the lear ning of 3D semantic edge detectors, even less to a joint learning method for the two tasks. In this paper, we tackle the 3D semantic edge detection task for the first time and present a new two-stream fully-convolutional network that jointly performs the two tasks. In particular, we design a joint refinement module that explicitly wires region information and edge information to improve the performances of both tasks. Further, we propose a novel loss function that encourages the network to produce semantic segmentation results with better boundaries. Extensive evaluations on S3DIS and ScanNet datasets show that our method achieves on par or better performance than the state-of-the-art methods for semantic segmentation and outperforms the baseline methods for semantic edge detection. Code release: https://github.com/hzykent/JSENet
116 - Xia Li , Yibo Yang , Qijie Zhao 2020
The convolution operation suffers from a limited receptive filed, while global modeling is fundamental to dense prediction tasks, such as semantic segmentation. In this paper, we apply graph convolution into the semantic segmentation task and propose an improved Laplacian. The graph reasoning is directly performed in the original feature space organized as a spatial pyramid. Different from existing methods, our Laplacian is data-dependent and we introduce an attention diagonal matrix to learn a better distance metric. It gets rid of projecting and re-projecting processes, which makes our proposed method a light-weight module that can be easily plugged into current computer vision architectures. More importantly, performing graph reasoning directly in the feature space retains spatial relationships and makes spatial pyramid possible to explore multiple long-range contextual patterns from different scales. Experiments on Cityscapes, COCO Stuff, PASCAL Context and PASCAL VOC demonstrate the effectiveness of our proposed methods on semantic segmentation. We achieve comparable performance with advantages in computational and memory overhead.
86 - Fangrui Zhu , Yi Zhu , Li Zhang 2021
Semantic segmentation is a challenging problem due to difficulties in modeling context in complex scenes and class confusions along boundaries. Most literature either focuses on context modeling or boundary refinement, which is less generalizable in open-world scenarios. In this work, we advocate a unified framework(UN-EPT) to segment objects by considering both context information and boundary artifacts. We first adapt a sparse sampling strategy to incorporate the transformer-based attention mechanism for efficient context modeling. In addition, a separate spatial branch is introduced to capture image details for boundary refinement. The whole model can be trained in an end-to-end manner. We demonstrate promising performance on three popular benchmarks for semantic segmentation with low memory footprint. Code will be released soon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا